on the category at hand. Also Internet slang terms,
which contribute to improve the classification
performance.
As a future extension of this work, we plan to
explore other languages especially French and
Arabic dialectal languages besides English. We will
also include more categories, and propose other pre-
processing approaches based on other features.
REFERENCES
Aggarwal, C. C., and Zhai, C. 2012. “A survey of text
classification algorithms”, In Mining text data,
Springer US, pp. 163-222.
Akaichi, J., Dhouioui, Z., and Lopez-Huertas Perez, M. J.
(2013) “Text mining facebook status updates for
sentiment classification”. In System Theory, Control
and Computing (ICSTCC), 17th International
Conference, IEEE, pp. 640-645.
Al-Ayyoub, M., Essa, S. B., & Alsmadi, I., 2015. “
Lexicon-based sentiment analysis of Arabic
tweets”, International Journal of Social Network
Mining, Vol.2, No.2, pp.101 – 114.
Amiri, H., and Chua, T. S. 2012. “Mining slang and urban
opinion words and phrases from cQA services: an
optimization approach”. In Proceedings of the fifth
ACM international conference on Web search and
data mining, ACM, pp. 193-202.
Belew, R. K. 2000. Finding out about: a cognitive
perspective on search engine technology and the
WWW, Vol. 1. Cambridge University Press.
Benkhelifa, R., Laallam, F.Z, 2015. “Opinion Extraction
and Classification of Real Time E-commerce Websites
Reviews”, International Journal of Computer Science
and Information Technologies, Vol. 6 No. 6 , pp 4992-
4996.
Faqeeh, M., Abdulla, N., Al-Ayyoub, M., Jararweh, Y.,
and Quwaider, M. 2014. “Cross-lingual short-text
document classification for facebook comments”.
In Future Internet of Things and Cloud (FiCloud),
2014 International Conference on. IEEE. pp. 573-578.
Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten, I. H. 2009. “Witten, The
WEKA Data Mining Software: An Update”, SIGKDD
Explorations, Vol. 11, No. 1.
Hu, X., Tang, J., Gao, H., and Liu, H. 2013.
“Unsupervised sentiment analysis with emotional
signals”. In Proceedings of the 22nd international
conference on World Wide Web, International World
Wide Web Conferences Steering Committee, pp. 607-
618.
Kovach, B. and Rosenstiel, T. 2007. “The Elements of
Journalism: What Newspeople Should Know and the
Public Should Expect”. Three Rivers Press.
Kundi, F. M., Ahmad, S., Khan, A., and Asghar, M. Z.
2014. “Detection and Scoring of Internet Slangs for
Sentiment Analysis Using SentiWordNet”, Life
Science Journal, Vol.11 No. 9.
Liu, B. 2012. “Sentiment analysis and opinion mining”.
Synthesis Lectures on Human Language Technologies,
Vol 5, No, 1 pp. 1–167.
Luhn, H. P., 1957. “A statistical approach to mechanized
encoding and searching of literary information”. IBM
Journal of Research and Development, Vol. 1 No. 4,
pp 309–317.
Nagar, N.a. 2009. “The Loud Public: Users' Comments
and the Online News Media”. Online Journalism
Symposium.
Poomagal, S., Visalakshi, P., and Hamsapriya, T. 2015.
“A novel method for clustering tweets in
Twitter. International Journal of Web Based
Communities”, Vol. 11 No. 2, pp 170-187.
Ramos, J. 2003. “Using tf-idf to determine word relevance
in document queries”. In Proceedings of the first
instructional conference on machine learning.
Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H.,
and Demirbas, M., 2010. Short text classification in
twitter to improve information filtering. In
Proceedings of the 33rd international ACM SIGIR
conference on Research and development in
information retrieval, ACM. pp. 841-842.
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., and Qin,
B. 2014. “Learning sentiment-specific word
embedding for twitter sentiment classification”. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics. Vol. 1, pp.
1555-1565.
Tsz-Wai Lo, R., He, B., and Ounis, I. 2005,
“Automatically building a stopword list for an
information retrieval system”. In Journal on Digital
Information Management: Special Issue on the 5th
Dutch-Belgian Information Retrieval Workshop (DIR),
Vol 5, pp 17–24.
Uttarwar, M., and Bhute, Y., 2013. “A Review on
Customizable Content-Based Message Filtering from
OSN User Wall” IJCSMC, Vol. 2, No. 10, pp 198 –
202.
Vanetti, M., Binaghi, E., Ferrari, E., Carminati, B., and
Carullo, M. 2013. “A System to Filter Unwanted
Messages from OSN User Walls”, IEEE Trans.
Knowledge and Data Eng., Vol. 25, No. 2, pp. 1041-
4347.
Weber, P. 2013. “Discussions in the comments section:
Factors influencing participation and interactivity in
online newspapers’ reader comments”. New Media &
Society, Vol.16 No. 6, pp 941-957.