
An Enhanced Workflow Scheduling Algorithm in Cloud Computing

Nora Almezeini and Alaaeldin Hafez
College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

Keywords: Cloud Computing, Scheduling Algorithm, Fault Tolerant, Pricing Models, Workflow.

Abstract: Cloud Computing has gained high attention by provisioning resources and software as a service.
Throughout the years, the number of users of clouds is increasing and thus will increase the number of tasks
and load in the cloud. Therefore, scheduling tasks efficiently and dynamically is a critical problem to be
solved. There are many scheduling algorithms that are used in cloud computing but most of them are
concentrating on minimizing time and cost and some of them concentrate on increasing fault tolerance.
However, very few scheduling algorithms that considers time, cost, and fault tolerance at the same time.
Moreover, Considering pricing models in developing scheduling algorithms to provide cost-effective fault
tolerant techniques is still in its infancy. Therefore, analysing the impact of the different pricing models on
scheduling algorithm will lead to choosing the right pricing model that will not affect the cost. This paper
proposes developing a scheduling algorithm that combines these features to provide an efficient mapping of
tasks and improve Quality of Service (QoS).

1 INTRODUCTION

Cloud computing is considered as a distributed
system that offers services to the Internet users
through service providers such as Amazon, Google,
Apple, Microsoft, and others. Cloud computing uses
Internet technologies to offer elastic services that
support dynamic access to the computing resources
and support variable workloads.

However, cloud computing still requires more
scientific research across a variety of different topics
in order to gain its full benefits. One of the important
topics that need to be researched is the performance
efficiency of scheduling where workflow scheduling
focuses on efficiently mapping tasks to appropriate
resources. Finding optimal solution in cloud
computing is considered as NP-Complete Problem
(Kalra and Singh, 2015). Each scheduling algorithm
based on one or more strategy. The most important
strategies or objectives commonly used are time,
cost, energy, Quality of Service (QoS), and fault
tolerance (Chandrashekar, 2015). There are many
scheduling algorithms have been applied in cloud
systems such as Min-Min, Max-Min, Genetic
Algorithm, Particle Swarm Optimization (PSO), and
Heterogeneous Earliest Finish Time (HEFT)
(Rahman et al., 2013, Chaudhary and Kumar, 2014b,
Devipriya and Ramesh, 2013). Those algorithms and
others have been concentrating on minimizing the

overall completion time of the schedule (makespan)
and the cost. However, very few algorithms have
taken fault tolerance in consideration at the same
time. (Chandrashekar, 2015)

Developing a fault tolerant system is important
to provide proper and continuous work even if
failures are detected. There are two types of fault
tolerant techniques that can be implemented in the
cloud computing services: Proactive techniques that
predict failures and prevent them by replacing
suspected components with working components,
and Reactive techniques try to reduce the impact of
failure after it occurs and recover it. (Nazari
Cheraghlou et al., 2015, Sarmila et al., 2015)

Applying fault tolerant techniques in the system
in order to detect and recover any failure attack the
system is very important. However, it costs a lot. For
example, replication technique needs more resources
that will increase the cost of scheduling. Also,
considering pricing models in developing scheduling
algorithms to provide cost-effective fault tolerant
techniques is still in its infancy. Therefore, it is
important to analyse the impact of the fault tolerant
technique on cost by considering the pricing models
that will lead to a cost-effective fault tolerance.
(Chandrashekar, 2015)

Pricing in cloud environment is a very important
concept since cloud providers are mostly concerns
on maximizing revenue and profitability while the

Almezeini, N. and Hafez, A.
An Enhanced Workflow Scheduling Algorithm in Cloud Computing.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 67-73
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

67

end users are more focused on cost-effectiveness in
addition to QoS. It is challenging to choose the right
pricing model that satisfies all parties. There are two
general pricing models in cloud computing: Fixed
Pricing Model (Pay-per-Use) where the consumers
are charged once for a computing capacity, and
Dynamic Pricing Model to provision fair resource
allocation with service differentiation.(Arshad et al.,
2015, AlRoomi et al., 2013)

The aim of this research is to show that it is
necessary to produce an enhanced workflow
scheduling system that combines the previous main
goals: reducing makespan and cost, increasing the
fault tolerance and robustness, and applying the
proper pricing model. Thus it will satisfy the
provider and consumer in the same time.

The rest of this short paper will talk about the
workflow scheduling and the most popular
scheduling algorithms used in clouds. Then, a brief
description of the important techniques of fault
tolerant that can be used in cloud computing. Also,
the pricing models of cloud computing will be
described in section 4. Then, research objectives and
methodology of the proposed research are presented
in section 5 and 6.

2 WORKFLOW SCHEDULING

Workflow scheduling assigns tasks based on their
dependencies to shared resources that are controlled
by a workflow scheduler (Kalra and Singh, 2015).
The aim of workflow scheduling is to obtain the
desired QoS. Workflow scheduling has a lot of
advantages. It increases computing performance and
throughput which increase the user satisfaction and
reduces the execution cost and time. However, it is
important to map the tasks efficiently to given
resources in order to provide high QoS to users.
Therefore, workflow scheduling is considered a
Non-deterministic polynomial (NP)-Complete
problem (Kalra and Singh, 2015, Chandrashekar,
2015).

There are many workflow scheduling
methodologies and techniques are used to map tasks
to resources which can be classified into two types:
Heuristics and Metaheuristics. Heuristic techniques
are based on exhaustive search to provide an
approximate optimal solution although the operating
cost and complexity of generating schedules is very
high. Examples of heuristic techniques are Min-Min
and Max-Min algorithms. On the other hand,
metaheuristic techniques are able to solve large and
complex problems effectively and efficiently in

reasonable time. Some of the well known
metaheuristic techniques are Genetic Algorithms
(GA), and Ant Colony Algorithms (ACO).(Kalra
and Singh, 2015, Chandrashekar, 2015)

Each scheduling algorithm should be based on
one or more strategies. The most important
strategies or objectives commonly used are time,
cost, energy, QoS, and fault tolerance
(Chandrashekar, 2015). Moreover, workflow
scheduling has two types of planning schemes: static
and dynamic (Chandrashekar, 2015, Devipriya and
Ramesh, 2013). If the number of tasks is known
beforehand, static scheme is applied so the tasks are
mapped at the compile time. On the other hand, the
dynamic scheme is applied when the tasks are
arrived in a dynamic manner so some assumptions
are provided before execution and scheduling
decisions are made just in time.

Famous cloud providers are heavily reliant on
big data analytics such as Google that developed
Map-Reduce framework for processing big data
workflows. Also, Yahoo and Facebook use Hadoop
which is the open source implementation of Map-
Reduce framework. Hadoop has four choices of
scheduling algorithms: FIFO, Fair scheduler,
Capacity scheduler and Dynamic scheduler.
Moreover, IBM blue cloud is based on Xen and
Hadoop clusters. Amazon EC2 uses FIFO, default
algorithm in Hadoop. (Wang et al., 2014,
Chandrashekar, 2015)

2.1 Workflow Scheduling Algorithms

2.1.1 Min-Min Scheduling Algorithm

Min-Min scheduling algorithm was proposed (
Rahman et al., 2013) for scheduling tasks in grid
projects. It is simple and fast and works as the base
for most of cloud scheduling algorithms. It provides
better performance by scheduling the task with
minimum size to the resource that has the minimum
completion time (MCT) for all unmapped tasks
(Chaudhary and Kumar, 2014b). Finally, this task is
removed from the set of unmapped tasks and the
process is repeated again by Min-Min algorithm till
every task is assigned.

However, the performance of this algorithm is
not perfect since it schedules the small tasks at first
(Devipriya and Ramesh, 2013). Also, it works well
if the number of smaller tasks is greater than the
number of larger tasks. Min-Min uses a single
resource; therefore, it is unable to execute tasks
concurrently.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

68

QoS Guided Min-Min Algorithm (Chaudhary and
Kumar, 2014a) is a Min-Min algorithm with Quality
of Service (QoS) constraints added to it such as
bandwidth, time, and memory. Tasks with high QoS
request parameters are assigned to resources first. In
this, resources are utilized in higher rate and they are
scaled elastically in execution.

Segmented Min-Min Scheduling Algorithm
(Chaudhary and Kumar, 2014a) where the tasks are
sorted based on the Estimated Time to Complete
(ETC). Then it creates segments with the equal size
using task list partitioning scheme. Segments with
larger tasks are scheduled and executed before the
smaller tasks. In each segment, Min-Min algorithm
is applied to assign tasks to resources.

Double Min-Min Algorithm (Chaudhary and
Kumar, 2014a, Kong et al., 2011) reselects the task
that is greater than mean Completion Time and then
schedules the reselected task again using Min-Min
algorithm. This will provide better load balancing
and resource utilization.

2.1.2 Max-Min Scheduling Algorithm

Max-Min scheduling algorithm is very similar to
Min-Min except that Max-Min selects the task that
has the maximum MCT and assign it to the
resources having minimum execution time (Rahman
et al., 2013, Chaudhary and Kumar, 2014b,
Devipriya and Ramesh, 2013) . This algorithm gives
the priority to large tasks rather than small ones and
executes many small tasks while executing the large
task concurrently. Therefore, Max-Min performs
better than Min-Min algorithm if the number of
short tasks is more than long tasks (Devipriya and
Ramesh, 2013).

Many improvements have been applied to these
algorithms in order to minimize their drawbacks
especially that they are not useful for large scale
distributed systems. (Devipriya and Ramesh, 2013)
has improved the Max-Min algorithm by assigning
the task with maximum execution time to the
resource that has minimum completion time instead
of assigning task with maximum completion time to
the resource which produce minimum execution
time in the original Max-Min algorithm. The goal is
to assign the largest task to the slowest resource in
order to give the opportunity to small tasks to be
finished by high speed resources concurrently. This
improved algorithm has reduced the makespan.
However, it concerned only with the number of
resources and tasks.

In (Kaur, 2014), the authors have improved the
Max-Min algorithm as in (Devipriya and Ramesh,

2013) and combine it dynamically with Ant Colony
algorithm as hybrid approach. The improved Max-
Min algorithm produces an optimal solution in the
initial stage, but it reduces after some time.
However, the searching speed during the early stage
in the Ant Colony algorithm is very slow due to the
lacking of pheromones, and then the speed of
optimal solution increases quickly after pheromones
reach a certain degree. Therefore, the aim of the
integration in (Kaur, 2014) is to benefit from Max-
Min algorithm in the initial stage and then get the
optimal solution by Ant Colony algorithm in last
stage.

Resource Aware Scheduling Algorithm (RASA)
(Devipriya and Ramesh, 2013, Chaudhary and
Kumar, 2014a) is a hybrid algorithm based on Min-
Min and Max-Min algorithms. They are applied
alternatively in order to avoid their main drawbacks.
This algorithm calculates the completion time of
each task on the available resources and then applies
Max-Min and Min-Min algorithms alternatively to
take advantage of both of them and avoid their
drawbacks.

2.1.3 Genetic Algorithm

Genetic Algorithm is a metaheuristic technique that
provides useful solution to optimization problems by
applying the principles of evolution. A Genetic
Algorithm depends on two techniques to be effective
(Rahman et al., 2013):

 Exploitation: exploit the best solution from past
results.

 Exploration: explore the new areas of solution
space.

Genetic Algorithm begins by initializing a
population with random candidate solutions called
individuals. Each individual is evaluated by a fitness
function which can be different according to the
given optimization objective. Then a proportion of
population is selected to reproduce a new
generation. After that, two main genetic operators
are used to generate new generation population.
These two operators are: crossover and mutation.
(Rahman et al., 2013, Kumar and Verma, 2012)

Using genetic algorithms in scheduling is a
powerful approach since they provide better
solutions with the increase of population size and
number of generations. However, the random
generation of initial population leads to schedules
that are not so much fit, so when these schedules are
mutated with each other, there are a very low
probability to produce better child than themselves.
Therefore, many researches have worked on

An Enhanced Workflow Scheduling Algorithm in Cloud Computing

69

improving genetic algorithms especially in the early
steps in order to increase the performance.

In (Kumar and Verma, 2012), the authors have
improved genetic algorithm by using the Min-Min
and Max-Min algorithms in generating initial
population. This will provide better initial
population and better solutions than initializing
population randomly in standard genetic algorithms.

(Liu et al., 2014) proposed an algorithm that
combines between genetic algorithm and Ant
Colony algorithm. They benefit from the strong
global search capability of genetic algorithms in the
early stages of Ant Colony algorithm to generate the
initial population then convert it to initial pheromone
of ACO to provide the optimal solution. This
integration of global search capability and high
accuracy shows the good performance of task
scheduling and load balancing.

(Wang et al., 2014) have proposed a scheduling
algorithm through improved genetic algorithm in
order to minimize the makespan and load balancing.
They chose greedy algorithm to initialize the
population. This proposed algorithm showed better
performance in load balancing than genetic
algorithm.

2.1.4 Other Scheduling Algorithms

Particle Swarm Optimization (PSO) based Heuristic
(Pandey et al., 2010) is a scheduling algorithm that
considers computation cost and data transmission
cost to schedule applications to cloud resources. The
evaluation results show that PSO can obtain greater
cost savings and good workload distribution to
resources in the cloud.

Heterogeneous Earliest Finish Time Algorithm
(HEFT) (Chaudhary and Kumar, 2014a, Wieczorek
et al., 2005) determines the average execution time
for each task and also the average communication
time between the resource of two tasks. After that, it
orders tasks by rank function so the task with a
higher rank value is given a higher priority. So the
tasks are scheduled based on the priority order and
every task is assigned to resources that complete it at
earliest time.

Scalable Heterogeneous Earliest Finish Time
Algorithm (SHEFT)(Chaudhary and Kumar, 2014a,
Hirales-Carbajal et al., 2012) works similar to HEFT
in addition to scaling resources elastically at
runtime. Therefore, it obtains an optimized
execution time.

Round Robin Algorithm (Chaudhary and Kumar,
2014a, Chaudhary and Singh Chhillar, 2013) is a
static algorithm that determines a time slot for each

task, and suspends the task if it is not completed
during this time slot. Once all the tasks have finished
their time slots the first uncompleted task will get
again another allocation and the cycle will repeat.
However, this will overload the nodes in some times
and under load at other times. Therefore, the
Weighted Round Robin Algorithm (Chaudhary and
Kumar, 2014a, Chaudhary and Singh Chhillar, 2013)
assigns weights in order to each task so the tasks are
allocated to resources based on their weights and
time slots for optimal utilization of resources.

3 FAULT TOLERANT
MECHANISMS IN CLOUDS

Fault is a defect that affects the system and changes
its status to be unable to continue to work. In
general, there are three types of faults (Sarmila et al.,
2015, Nazari Cheraghlou et al., 2015):

• Transient: a fault that vanished when it fixed.
• Intermittent: a fault that could appears again

and again.
• Permanent: a fault that cannot be fixed.

Faults in cloud computing are different based on
computing resources. (Kumar et al., 2015) have
indicated that fault in cloud computing could be
Network Fault, Physical Fault, Processor Fault, and
Service Expiry Fault. Moreover, (Chandrashekar,
2015) mentioned that faults could be variations in
performance of resources, or unavailable files.

It is obvious that developing a fault tolerant
system is important to provide proper and
continuous work even if failures are detected. There
are different fault tolerant techniques that can be
implemented in the cloud computing services. These
techniques can be classified into two categories:
Proactive and Reactive techniques. Proactive
techniques avoid recovery after the occurrence of
fault. It predicts failures and prevents them by
replacing suspected components with working
components. This technique is more efficient than
reactive but not always the predictions are accurate.
Reactive techniques try to reduce the impact of
failure after it occurs and recover it. It is more
reliable. Therefore, it is mostly used. (Sarmila et al.,
2015, Nazari Cheraghlou et al., 2015)

3.1 Proactive Fault Tolerant
Techniques

Self-heading: this technique handles the failed
instances of an application on multiple virtual

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

70

machines, since multiple instances of the application
are running on multiple VMs.

Preemptive Migration: this technique is based on
monitoring and analysing the application
continuously according to the feedback-loop
mechanism.

3.2 Reactive Fault Tolerant Techniques

Replication: tasks are replicated on different
resources in order to be able to recover quickly from
failures.

Resubmission: this technique resubmits the failed
task to alleviate failures.

Check Point/Restart: while the application is
running, it makes checkpoints in different parts. This
technique restarts the application at the last
checkpoint achieved when a failure occurs.

Rescue Workflow: this technique ignores the
failed tasks and allows the workflow to continue
until no more forward steps can be made and
becomes impossible to continue without handling
the failures.

User Defined Exception Handling: this technique
allows the user to specify a predefined action for
particular failures in a workflow.

Job Migration: when a failure occurs, this
technique will send the task to other similar virtual
machine.

4 PRICING MODELS IN CLOUDS

Cloud providers are mostly concerns on maximizing
revenue and profitability which can be employed by
several pricing models. On the other hand, end users
are more focused on Quality of Service (QoS),
availability and usability of resources, and cost-
effectiveness. It is seriously challenging cloud
providers to keep balance between these two
important purposes and choose the right pricing
model that satisfies all parties.(Arshad et al., 2015,
AlRoomi et al., 2013)

Pricing models in cloud computing can be
classified into two general models:

4.1 Fixed Pricing (Pay-Per-Use)

Cloud providers mainly used this approach in order
to provision their services to consumers. Consumers
are charged once for a computing capacity. This
strict model has some drawbacks since the user may
not use all the resources he charged for and also the
provider will not consider the QoS and other

satisfaction measures after charging the user.
Examples of cloud providers that employ this model
is Amazon on-demand instances and Google App
Engine.(AlRoomi et al., 2013)

Pay per use fixed pricing model is suitable for
IaaS and PaaS. It has two sub categories: Pay for
resources and Subscription. In Pay for resources
technique, users will be charged for using storage or
bandwidth size of resource. While in Subscription
technique, the user will subscribe to a service
provider with a fixed price per unit for a long
time.(Arshad et al., 2015)

4.2 Dynamic Pricing

Whereas the nature of cloud environment is dynamic
and the number of cloud users increasing, vendors
have adopted the modification from fixed pricing to
dynamic pricing in order to provision fair resource
allocation with service differentiation. Amazon’s
spot instances pricing model was the first concept of
dynamic pricing model which profits from the
available unused resources in the data centres
executing the requests of on-demand
instances.(Arshad et al., 2015)

5 RESEARCH OBJECTIVES

Based on the brief literature review, it is obvious
that scheduling tasks efficiently and dynamically is a
critical problem to be solved. Throughout the years,
the number of tasks in the cloud system and
dependencies between tasks are increasing. This will
affect the makespan and the cost. Therefore, it is
necessary to develop a scheduling algorithm that
prevents these challenges and provide better
performance in time and cost.

Moreover, the system will be susceptible to
failures and performance variations. Thus, making
the workflow scheduling algorithm efficient and
fault tolerant is very important in order to overcome
the drawbacks of previous algorithms.

Pricing in cloud environment is a very important
concept. Considering pricing models in developing
scheduling algorithms to provide cost-effective fault
tolerant techniques is still in its infancy. Therefore,
analysing the impact of the different pricing models
on scheduling algorithm will lead to choosing the
right pricing model that will not affect the cost.

The goal of this research is to propose an
enhanced workflow scheduling system that
combines the main goals: reducing makespan and
cost, increasing the fault tolerance and robustness,

An Enhanced Workflow Scheduling Algorithm in Cloud Computing

71

and applying the proper pricing model. Thus it will
satisfy the provider and consumer in the same time.

6 METHODOLOGY

As a first step, the research methodology starts with
studying the domain of cloud computing and
techniques and mechanisms of cloud computing.
Following this step, we will investigate previous and
current studies and works related to our research. As
a major step towards achieving our aim, we will
develop a scheduling algorithm that improves the
performance of the current scheduling algorithms in
terms of reducing time and cost. Secondly, a proper
fault tolerant mechanism will be integrated to the
developed scheduling algorithm so that does not
affect the time and cost and increases the reliability
and robustness of the system. Finally, analysing the
impact of the different pricing models on the
proposed scheduling algorithm will lead to choosing
the right pricing model for the proposed algorithm in
which it will not affect the previous steps.

A simulator such as CloudSim will be used to
evaluate the performance of the proposed algorithm
since it is very difficult to conduct large scale
experiments on real cloud infrastructures as well as
it is time consuming and costly. The proposed
algorithm will be evaluated first in terms of time and
cost. The results will be compared with previous
algorithms that consider the same goal. Then we will
evaluate the algorithm in terms of fault tolerant and
compare the results with the algorithms that apply
the same techniques. After that, we will analyse the
contribution of the selected pricing model in
reducing the cost of applying the fault tolerant
mechanism in the proposed algorithm.

Finally, the proposed algorithm will be evaluated
as whole and analysed in terms if it achieved the
desired objective and if it increased the efficiency of
workflow scheduling.

7 CONCLUSIONS

It is explicit that mapping tasks efficiently to given
resources in order to ensure Quality of Service
(QoS) is a major challenge. If this is not achieved,
the user will hesitate to join the cloud and pay.
Minimizing makespan and cost, increasing fault
tolerance, and choosing the proper pricing model are
very important objectives that will improve the QoS.
Therefore, combining the features in a workflow

scheduling is necessary to provide efficiency and
gain satisfaction from providers and consumers.

ACKNOWLEDGEMENTS

This research project is supported by a grant from
the Deanship of Graduate Studies, King Saud
University, Saudi Arabia.

REFERENCES

Alroomi, M., Alebrahim, S., Buqrais, S. & Ahmad, I.
2013. Cloud Computing Pricing Models: A Survey.
International Journal Of Grid And Distributed
Computing, 6, 93-106.

Arshad, S., Ullah, S., Khan, S. A., Awan, M. D. & Khayal,
M. S. H. A Survey Of Cloud Computing Variable
Pricing Models. Evaluation Of Novel Approaches To
Software Engineering (Enase), 2015 International
Conference On, 29-30 April 2015 2015. 27-32.

Chandrashekar, D. P. 2015. Robust And Fault-Tolerant
Scheduling For Scientific Workflows In Cloud
Computing Environments.

Chaudhary, D. & Kumar, B. 2014a. An Analysis Of The
Load Scheduling Algorithms In The Cloud Computing
Environment: A Survey. 2014 9th International
Conference On Industrial And Information Systems
(Iciis).

Chaudhary, D. & Kumar, B. 2014b. Analytical Study Of
Load Scheduling Algorithms In Cloud Computing.
2014 International Conference On Parallel,
Distributed And Grid Computing.

Chaudhary, D. & Singh Chhillar, R. 2013. A New Load
Balancing Technique For Virtual Machine Cloud
Computing Environment. International Journal Of
Computer Applications, 69, 37-40.

Devipriya, S. & Ramesh, C. 2013. Improved Max-Min
Heuristic Model For Task Scheduling In Cloud. 2013
International Conference On Green Computing,
Communication And Conservation Of Energy (Icgce).

Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R.,
González-García, J. L., Röblitz, T. & Ramírez-
Alcaraz, J. M. 2012. Multiple Workflow Scheduling
Strategies With User Run Time Estimates On A Grid.
Journal Of Grid Computing, 10, 325-346.

Kalra, M. & Singh, S. 2015. A Review Of Metaheuristic
Scheduling Techniques In Cloud Computing. Egyptian
Informatics Journal.

Kaur, R. 2014. Hybrid Improved Max Min Ant Algorithm
For Load Balancing In Cloud. In: Ghumman, N. (Ed.)
International Conference On Communication,
Computin G & Systems.

Kong, X., Lin, C., Jiang, Y., Yan, W. & Chu, X. 2011.
Efficient Dynamic Task Scheduling In Virtualized
Data Centers With Fuzzy Prediction. Journal Of
Network And Computer Applications, 34, 1068-1077.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

72

Kumar, P. & Verma, A. 2012. Independent Task
Scheduling In Cloud Computing By Improved Genetic
Algorithm. International Journal Of Advanced
Research In Computer Science And Software
Engineering (Ijarcsse), 2, 111-114.

Kumar, S., Singh Rana, D. & Chandra Dimri, S. 2015.
Fault Tolerance And Load Balancing Algorithm In
Cloud Computing: A Survey. International Journal Of
Advanced Research In Computer And Communication
Engineering, 4, 92-96.

Liu, C.-Y., Zou, C.-M. & Wu, P. 2014. A Task Scheduling
Algorithm Based On Genetic Algorithm And Ant
Colony Optimization In Cloud Computing. 2014 13th
International Symposium On Distributed Computing
And Applications To Business, Engineering And
Science.

Nazari Cheraghlou, M., Khadem-Zadeh, A. & Haghparast,
M. 2015. A Survey Of Fault Tolerance Architecture In
Cloud Computing. Journal Of Network And Computer
Applications.

Pandey, S., Wu, L., Guru, S. M. & Buyya, R. 2010. A
Particle Swarm Optimization-Based Heuristic For
Scheduling Workflow Applications In Cloud
Computing Environments. 2010 24th Ieee
International Conference On Advanced Information
Networking And Applications.

Rahman, M., Hassan, R., Ranjan, R. & Buyya, R. 2013.
Adaptive Workflow Scheduling For Dynamic Grid
And Cloud Computing Environment. Concurrency
And Computation: Practice And Experience, 25, 1816-
1842.

Sarmila, G. P., Gnanambigai, N. & Dinadayalan, P. 2015.
Survey On Fault Tolerant — Load Balancing
Algorithmsin Cloud Computing. 2015 2nd
International Conference On Electronics And
Communication Systems (Icecs).

Wang, T., Liu, Z., Chen, Y., Xu, Y. & Dai, X. 2014. Load
Balancing Task Scheduling Based On Genetic
Algorithm In Cloud Computing. 2014 Ieee 12th
International Conference On Dependable, Autonomic
And Secure Computing.

Wieczorek, M., Prodan, R. & Fahringer, T. 2005.
Scheduling Of Scientific Workflows In The Askalon
Grid Environment. Acm Sigmod Record, 34.

An Enhanced Workflow Scheduling Algorithm in Cloud Computing

73

