_en.html.
Foroughi H., Aski B.S., Pourreza H., 2008. Intelligent
video surveillance for monitoring fall detection of
elderly in home environments, 11th International
Conference on Computer and Information
Technology. ICCIT 2008.
Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann P., Witten, I. H., 2009. The WEKA Data
Mining Software: An Update. SIGKDD Explorations,
vol. 11.
Home Sweet Home Project: http://cordis.europa.eu/
project/rcn/191712_en.html.
Kastner, M., Strickert, M., Villmann, T., 2013. A sparse
kernelized matrix learning vector quantization model
for human activity recognition. European Symposium
on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN).
Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy,
K.R.K., 2001. Improvements to Platt's SMO algorithm
for SVM classifier design. Neural Computation, vol.
13, pp. 637-649.
Kinoptim Project: http://cordis.europa.eu/project/rcn/
106678_en.html.
Kira, K., Rendell, L. A., 1992. A practical approach to
feature selection. Proc. 9th Int. Conf. Mach. Learn.,
pp. 249 – 256.
Kononenko, I., 1994. Estimating attributes: Analysis and
extension of RELIEF. Proc. Euro. Conf. Mach.
Learn., vol. 784, pp. 171– 182.
Kononenko, I., Simec, E., Robnik-Sikonja, M., 1997.
Overcoming the Myopic of Inductive Learning
Algorithms with RELIEF-F. Applied Intelligence.
Mitnitski, A.B., et al., 2002. Frailty, fitness and late-life
mortality in relation to chronological and biological
age. BMC Geriatr, 2: p. 1.
Mobiserv Project: http://cordis.europa.eu/project/rcn/
93537_en.html.
Morley, J.E., et al., 2006. Frailty. Med Clin North Am, .
90(5): p. 837-47.
Morley, J.E., et al., 2013. Frailty consensus: a call to
action. J Am Med Dir Assoc, 14(6): p. 392-7.
Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis,
M., Richardson, M., Megalooikonomou, V., 2015.
Seizure detection using EEG and ECG signals for
computer-based monitoring, analysis and management
of epileptic patients. Expert Systems with Applications,
Volume 42, Issue 6, 15, Pages 3227–3233.
Platt, J., 1998. Fast Training of Support Vector Machines
using Sequential Minimal Optimization. Advances in
Kernel Methods - Support Vector Learning.
Reiss, A., Hendeby, G., Stricker, D., 2013. A competitive
approach for human activity recognition on
smartphones. European Symposium on Artificial
Neural Networks, Computational Intelligence and
Machine Learning (ESANN).
Reyes-Ortiz, J.L., Ghio, A., Parra, X., Anguita, D.,
Cabestany, J., Catala, A., 2013. Human Activity and
Motion Disorder Recognition: Towards Smarter
Interactive Cognitive Environments. ESANN 2013
21th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine
Learning.
Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N.,
2013. A one-vs-one classifier ensemble with majority
voting for activity recognition. European Symposium
on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN).
Seacw Project: http://cordis.europa.eu/project/rcn/191786
_en.html.
Sun, Y., Li, J. 2006. Iterative RELIEF for feature
weighting. Proc. 21st Int. Conf. Mach. Learn., pp.
913–920.
Sun, Y., Wu, D., 2008. A RELIEF based feature extraction
algorithm. In Proceedings of SIAM International
Conference on Data Mining.
Xiang, Y., Tang, Y., Ma, B., Yan, H., Jiang, J., Tian, X.,
2015. Remote Safety Monitoring for Elderly Persons
Based on Omni-Vision Analysis, PLoS One, 10(5).
Feature Selection Evaluation for Light Human Motion Identification in Frailty Monitoring System