proposed a new semantic distance for clustering
analyze.
-We introduce an approach to aligning clusters
based on the predefined medoids. The latter may
facilitate the knowledge base visualization, as well as
speed up the task of matched clusters pairs.
-We proceed to align similar clusters’ entities
with the use of multiple similarity techniques.
As the next step, we are planning to ameliorate the
system efficiency in terms of precision and recall, we
are looking as well to perform experiments over large
ontologies so to be able to participate in benchmark
OAEI.
REFERENCES
Algergawy, S. Massmann & E. Rahm, 2011. A Clustering-
Based Approach For Large-Scale Ontology Matching.
Advances In Databases And Information Systems,
January.Pp. 415-428.
Bulzan, S.D. Bioportal. [En Ligne]
Available At: Http://Bioportal.Bioontolgy.Org/Ontolo
gies/Bcgo [Accès Le 26 June 2009].
Bulzan, Bioportal. [En Ligne]
Available At: Http://Bioportal.Bioontology.Org/Ontol
ogies/Bcgo [Accès Le 26 June 2009].
Duan, Fokoue, A., K.Srinivas & B.Byrne, 2011. A
Clustering-Based Approach To Ontology Alignment.
The Semantic Web–Iswc Springer, Pp. 146-161.
Fernández, J.Velasco, I.J.Marsa-Maestre & M.Lopez-
Carmona, 2012. Fuzzyalign: A Fuzzy Method For
Ontology Alignment.. Keod 2012 – Proceedings Of The
International Conference On Knowledge Engineering
And Ontology Development, Pp. 98-107.
Giunchiglia, Autayeu, A. & Pane, J., S.D. S-Match: An
Open Source Framework For Matching Lightweight
Ontologies.. Semantic Web, 3(3), Pp. 307-317.
Hamdi, F. & Safar, B., 2009. Partitionnement D’ontologies
Pour Le Passage A L’échelle Des Techniques
D’alignement. 9eme Journées Francophones
Extraction Et Gestion Des Connaissances.
Hu, W., Qu, Y. & Cheng, G., 2008. Matching Large
Ontologies: A Divide-And-Conquerapproach. Data
And Knowledge Engineering, Volume 67, Pp. 140-160.
Hu, W., Zhao, Y. & Y.Qu, 2006. Partition-Based Block
Matching Of Large Class Hierarchies. Proceedings Of
The First Asian Conference On The Semantic Web, P.
72–83.
Idoudi, R., Ettabaa, K. S., Hamrouni, K. & Solaiman, B.,
2014. An Evidence Based Approach For Multipe
Similarity Measures Combining For Ontology
Aligning. 1st Ieee International Conference On Image
Processing Applications And Systems Conference
(Ipas), November.
Jafar, O. M. & Sivakumar, R., 2014. Hybrid Fuzzy Data
Clustering Algorithm Using Different Distance
Metrics: A Comparative Study. International Journal
Of Soft Computing And Engineering (Ijsce), January,
3(6), Pp. 241-248.
Massmann, S. Et Al., 2011. Evolution Of The Coma Match
System. Ontology Matching, June.Volume 49.
Ngo, D., 2012. Enhancing Ontology Matching By Using
Machine Learning, Graph Matching And Information
Retrieval Techniques, Montpellier: Université
Montpellier Ii.
Ningsheng, Cheng, W. & Q.Yuzhong, 2005. Falcon-Ao:
Aligning Ontologies With Falcon. K-Cap Workshop On
Integrating Ontologies, Pp. 85-91.
Qiu & Liu, Y., 2014. An Effective Approach To Fuzzy
Ontologies Alignment. International Journal Of
Database Theory And Application, 7(3), Pp. 73-82.
Schlicht, A. & Stuckenschmidt, H., 2008. A Flexible
Partitioning Tool For Large Ontologies. Ieee/Wic/Acm
International Conference On Web Intelligence, Wi,
December.P. 482–488..
Seddiquia, M. & Aono, M., 2009. An Efficient And
Scalable Algorithm For Segmented Alignment Of
Ontologies Of Arbitrary Size. Web Semantics, 7(4), Pp.
344-356.
Shvaiko & Euzenat, J., 2005. Survey Of Schema-Based
Matching Approaches. Journal On Data Semantics Iv,
Pp. 146-171.
Toujilov, P., 2012. Mammographic Knowledge
Representation In Description Logic. Springer, August
.Pp. 158-169.
Tu, K. Et Al., 2005,. Towards Imaging Large-Scale
Ontologies For Quick Understanding And Analysis.
Proceedings Of The 4th International Semantic Web
Conference, Lncs, Volume 3729, P. 702–715.
Wanga & Zhang, 2007. On Fuzzy Cluster Validity Indices.
Fuzzy Sets And Systems, 14 March, 158(19), P. 2095–
2117.
Wang, Zhou & B.Xu, 2011. Matching Large Ontologies
Based On Reduction Anchors. Proceedings Of The
Twenty-Second International Joint Conference On,
Volume 3, P. 2343–2348.