JCL: A High Performance Computing Java Middleware
André Luís Barroso Almeida, Saul Emanuel Delabrida Silva, Antonio C. Nazaré Jr., Joubert de Castro Lima
2016
Abstract
Java Cá&Lá or just JCL is a distributed shared memory reflective lightweight middleware for Java developers whose main goals are: i) provide a simple deployment strategy, where automatic code registration occurs, ii) support a collaborative multi-developer cluster environment where applications can interact without explicit dependencies, iii) execute existing sequential Java code over both multi-core machines and cluster of multi-core machines without refactorings, enabling the separation of business logic from distribution issues in the development process, iv) provide a multi-core/multi-computer portable code. This paper describes JCL’s features and architecture; compares and contrasts JCL to other Java based middleware systems, and reports performance measurements of JCL applications.
References
- Brynjolfsson, E. M. (2012). Big data: The management revolution. Harvard Business Review, 90(10):6066.
- Cohen, L. (2015). Java Parallel Processing Framework. Available from: hhttp://www.jppf.org/i.[15 Dezember 2015].
- Coulouris, G., Dollimore, J., and Kindberg, T. (2007). Sistemas Distribuídos - 4ed: Conceitos e Projeto . Bookman Companhia.
- (2014). A flexible framework for accurate simulation of cloud in-memory data stores. arXiv preprint arXiv:1411.7910.
- Egan, S. (2005). Open Source Messaging Application Development: Building and Extending Gaim. Apress.
- Forum, M. P. (1994). Mpi: A message-passing interface standard. Technical report, Knoxville, TN, USA.
- Gelibert, A., Rudametkin, W., Donsez, D., and Jean, S. (2011). Clustering osgi applications using distributed shared memory. In Proceedings of International Conference on New Technologies of Distributed Systems (NOTERE 2011), pages 1-8.
- Ghosh, S. (2014). Distributed systems: an algorithmic approach. CRC press.
- Gokhale, A., Balasubramanian, K., Krishna, A. S., Balasubramanian, J., Edwards, G., Deng, G., Turkay, E., Parsons, J., and Schmidt, D. C. (2008). Model driven middleware: A new paradigm for developing distributed real-time and embedded systems. Science of Computer programming, 73(1):39-58.
- Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition.
- Henning, M. and Spruiell, M. (2006). Distributed programming with ice reading.
- Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R., Shenker, S., and Stoica, I. (2011). Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the USENIX Conference on Networked Systems Design and Implementation (NSDI 2011), pages 295-308.
- Kaminsky, A. (2015). Big CPU, Big Data: Solving the World's Toughest Computational Problems with Parallel Computing. Unpublished manuscript. Retrieved from http://www.cs.rit.edu/˜ark/bcbd.
- Karantasis, K. and Polychronopoulos, E. (2011). Programming gpu clusters with shared memory abstraction in software. In Proceedings of Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2011), pages 223- 230.
- Karantasis, K. I. and Polychronopoulos, E. D. (2009). Pleiad: A cross-environment middleware providing efficient multithreading on clusters. InProceedings of ACM Conference on Computing Frontiers (CF 2009), pages 109-116.
- Murphy, A. L., Picco, G. P., and Roman, G.-C. (2006). Lime: A coordination model and middleware supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol., 15(3):279-328.
- Nester, C., Philippsen, M., and Haumacher, B. (1999). A more efficient rmi for java. In Proceedings of the ACM 1999 conference on Java Grande, pages 152- 159. ACM.
- OSGi (2010). Osgi specification release 4.2.
- Perera, C., Liu, C. H., Jayawardena, S., and Chen, M. (2014). A survey on internet of things from industrial market perspective. Access, IEEE, 2:1660-1679.
- Pitt, E. and McNiff, K. (2001). Java.Rmi: The Remote Method Invocation Guide. Addison-Wesley Longman Publishing Co., Inc.
- Seovic, A., Falco, M., and Peralta, P. (2010). Oracle Coherence 3.5. Packt Publishing Ltd.
- Taboada, G. L., Ramos, S., Expósito, R. R., Touri n˜o, J., and Doallo, R. (2013). Java in the high performance computing arena: Research, practice and experience. Science of Computer Programming, 78(5):425-444.
- Taboada, G. L., Tourin˜o, J., and Doallo, R. (2009). Java for high performance computing: assessment of current research and practice. In Proceedings of the 7th International Conference on Principles and Practice of Programming in Java, pages 30-39. ACM.
- Tanenbaum, A. S. and Van Steen, M. (2007). Distributed Systems. Prentice-Hall.
- Tariq, M. A., Koldehofe, B., Bhowmik, S., and Rothermel, K. (2014). Pleroma: a sdn-based high performance publish/subscribe middleware. In Proceedings of the 15th International Middleware Conference, pages 217-228. ACM.
- Taveira, W. F., de Oliveira Valente, M. T., da Silva Bigonha, M. A., and da Silva Bigonha, R. (2003). Asynchronous remote method invocation in java. Journal of Universal Computer Science, 9(8):761-775.
- Team, I. (2015). Infinispan 8.1 Documentation. Available from: hhttp://infinispan.org/docs/8.1.x/index. htmli.[15 Dezember 2015].
- Terracotta Inc. (2008). The Definitive Guide to Terracotta: Cluster the JVM for Spring, Hibernate and POJO Scalability. Springer Science & Business.
- Troester, M. (2012). Big data meets big data analytics. Cary, NC: SAS Institute Inc.
- Veentjer, P. (2013). Mastering Hazelcast. Hazelcast.
- Walker, S. M., Dearle, A., Norcross, S. J., Kirby, G. N. C., and McCarthy, A. (2003). Rafda: A policy-aware middleware supporting the flexible separation of application logic from distribution. Technical report, University of St Andrews. Technical Report CS/06/2.
- Watson, R. T., Wynn, D., and Boudreau, M.-C. (2005). Jboss: The evolution of professional open source software. MIS Quarterly Executive, 4(3):329-341.
- Xiong, J., Wang, J., and Xu, J. (2010). Research of distributed parallel information retrieval based on jppf. In 2010 International Conference of Information Science and Management Engineering, pages 109-111. IEEE.
- Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, pages 10- 10.
- Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1):7-18.
Paper Citation
in Harvard Style
Luís Barroso Almeida A., Emanuel Delabrida Silva S., Nazaré Jr. A. and de Castro Lima J. (2016). JCL: A High Performance Computing Java Middleware . In Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-187-8, pages 379-390. DOI: 10.5220/0005917903790390
in Bibtex Style
@conference{iceis16,
author={André Luís Barroso Almeida and Saul Emanuel Delabrida Silva and Antonio C. Nazaré Jr. and Joubert de Castro Lima},
title={JCL: A High Performance Computing Java Middleware},
booktitle={Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2016},
pages={379-390},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005917903790390},
isbn={978-989-758-187-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - JCL: A High Performance Computing Java Middleware
SN - 978-989-758-187-8
AU - Luís Barroso Almeida A.
AU - Emanuel Delabrida Silva S.
AU - Nazaré Jr. A.
AU - de Castro Lima J.
PY - 2016
SP - 379
EP - 390
DO - 10.5220/0005917903790390