intensity, which is clearly proved by its lower
coefficient of variance compared to the K-means
result. Hence, the proposed procedure demonstrates
its accuracy in color image segmentation, knowing
that this method has all advantages of artificial
neural network mentioned before.
In spite of that, The Mahalanobis Distance has a
higher execution time than Euclidian Distance
because of its processing complexity but the nearest-
neighbor search can be performed in only O(LogN)
instead of O(N) time by exploiting the Delaunay
triangulation (Knuth, 1973). Also, with this so
reduced number N of neurons, the proposed
detection of modes procedure stays faster than this
phase in both Neuromimetic and
Neuromorphological procedures (Timouyas et al.,
2014). Although, our aim to further minimize the
execution time of the new approach in overall.
4 CONCLUSIONS
In this paper, a new approach of unsupervised color
image segmentation has been introduced, based
essentially on neural network concepts.
In order to conceive an unsupervised
classification procedure, we have searched to
connect the detected local maxima, by CNN, in such
away, every connected set of neurons represents a
class, using the Competitive Hebbian Learning.
The proposed procedure permits good
unsupervised image color segmentation without
resorting to any thresholding and does not require
any priori information about the number of classes
nor about the structure of their distributions in the
sample.
REFERENCES
Delaunay, B. (1934). Sur la Sphère vide. Bulletin of the
Academy of Sciences USSR,VII, pp.793-800.
Devijver, P.A., & Kittler, K. (1982) ‘Pattern recognition:
A statistical approach’, Englewood Cliff, NJ, Prentice-
Hall international.
Eddarouich, S., & Sbihi, A. (2007) ‘Neural Network for
Modes Detection in Pattern Classification’. ICTIS’07,
Morocco, Fez, 3-5 pp. 300-303.
Fritzke, B. (1995) ‘ A growing neural gas network learns
topologies’, In G. Tesauro, D. S. Touretzky, & T. K.
Leen (Eds.), Advances in neural information
processing systems: 7. Cambridge, MA: MIT Press,
pp. 625_632.
Fukunagal, K., & Hostler, D. (1975). The estimation of the
gradient of a density function with applications in
pattern recognition. IEEE Trans. Inf. Theory, vol. IT-
21, n°1, p 32-40.
Gray, R.M. (1984) ‘Vector Quantization’, ASSP Magazine,
IEEE (Vol 1, Issue 2 ), ISSN :0740-7467, 1984, pp. 4–29.
Hammouche, K. Diaf, M. and Postaire, J.-G. (2005) ‘A
clustering method based on multidimensional texture
analysis’, Pattern Recognition, pp. 1-13.
Hebb, D. (1949) ‘Organisation of Behavior’, Wiley, New
York.
Knuth, D. E. (1973) ‘The art of computer programming’,
Volume III: Sorting and searching. Reading, MA:
Addison-Wesley.
Martinetz, T.M. (1993) ‘Competitive Hebbian learning
rule forms perfectly topology preserving maps’,
(ICANN), Gielen S. and Kappen B. (eds), Springer,
Heidelberg, pp. 427_434.
Martinetz, T., & schulten K. (1994). Topology
Representing Networks. Neural Networks. Vol. 7, No
3, pp. 507-522.
Mizoguchi, R., & Shimura, S. (1976). Nonparametric
learning without a teacher based on mode estimation.
IEEE Trans. Comput., C-25(11), pp.1109-1117.
Moussa. A, Sbihi. A and Postaire. J-G, (2008) ‘A Markov
random field model for mode detection in cluster
analysis’. Patt. Recog. Letters 29, pp. 1197–1207.
Muthanna, A. H.,Touahni, R., Sbihi, A., & Messoussi, R.
and Eddarouich, S. (2010) ‘Détection des modes d’une
distribution de données multidimensionnelles par
réseau de neurones et morphologie mathématique’,
Journées d'optique et du traitement de l'information.
Parzen, E. (1962) ‘An Estimation of a Probability Density
Function and Mode’, Ann. Math. Stat., vol. 33, pp.
1065-1076.
Postaire, J.-G., & Vasseur, C. P. A. (1982) ‘A fast
Algorithm for non Parametric Probability Density
Estimation’, IEEE, Trans. on Pattern Anal. and
Machine Intel. PAMI-4, n°6, pp. 663-666.
Timouyas, M., Eddarouich, S., & Hammouch, A. (2012).
A new approach of classification for non-Gaussian
distribution upon competitive training, (ICCS’12),
Agadir, Morocco, pp.1-6.
Timouyas, M., Eddarouich, S., Hammouch, A, Touahni,
R. & Sbihi, A. (2014)‘Unsupervised Neural-
Morphological Colour Image Segmentation Using the
Mahalanobis as Criteria of Resemblance’, ICMCS’14,
Marrakech, Morocco, pp.314–320.
Uchiyama, T., & Arbib, M. A. (1994) ‘Color image
segmentation using competitive learning’, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, n 12, pp. 1197-1206.
Vasseur, C. P. A. & Postaire, J-G. (1980) ‘A connexity
testing method for cluster analysis’ I.EEE Trans. Syst.
Man. Cyber, vol SMC-10, n°3, p 145-179.
Verikas, A., Malmqvist, K., & Bergman, L. (1997). Colour
image segmentation by modular neural network. Pattern
Recognition Letters, Vol 18, Issue 2, pp. 173–185.
Yeo, N.C., Lee, K.H., Venkatesh, Y.V. and Ong, S.H.
(2005) ‘Colour image segmentation using the self-
organizing map and adaptive resonance theory’, Image
and Vision Computing 23, pp. 1006-1079.