Bao, L. and Intille, S. S. (2004). Activity Recognition from
User-Annotated Acceleration Data. Proceedings of
PERVASIVE 2004, pages 1–17.
Brugman, H. and Russel, A. (2004). Annotating multi-
media / multi-modal resources with ELAN. Proceed-
ings of the 4th International Conference on Language
Resources and Language Evaluation (LREC 2004),
pages 2065–2068.
Cippitelli, E., Gasparrini, S., Gambi, E., Spinsante, S.,
Wahslen, J., Orhan, I., and Lindh, T. (2015). Time
synchronization and data fusion for rgb-depth cam-
eras and wearable inertial sensors in aal applications.
In IEEE ICC Workshop on ICT-enabled services and
technologies for eHealth and AAL.
Fafoutis, X., Tsimbalo, E., Mellios, E., Hilton, G.,
Piechocki, R., and Craddock, I. (2016). A residential
maintenance-free long-term activity monitoring sys-
tem for healthcare applications. EURASIP Journal on
Wireless Communications and Networking, 2016(31).
Filippaki, C., Antoniou, G., and Tsamardinos, I. (2011). Us-
ing constraint optimization for conflict resolution and
detail control in activity recognition. In Ambient In-
telligence, pages 51–60. Springer.
Hamilton, J. (2008). Think you’re multitasking? think
again. Morning Edition, National Public Radio (2 Oc-
tober 2008).
Hoque, E. and Stankovic, J. (2012). AALO: Activity recog-
nition in smart homes using Active Learning in the
presence of Overlapped activities. Proceedings of the
6th International Conference on Pervasive Computing
Technologies for Healthcare, pages 139–146.
Kipp, M. (2012). Annotation Facilities for the Reliable
Analysis of Human Motion. In Proceedings of the
Eighth International Conference on Language Re-
sources and Evaluation (LREC), pages 4103–4107.
Logan, B., Healey, J., Philipose, M., Tapia, E. M., and In-
tille, S. (2007). A Long-term Evaluation of Sensing
Modalities for Activity Recognition. In Proceedings
of the 9th International Conference on Ubiquitous
Computing, UbiComp ’07, pages 483–500, Berlin,
Heidelberg. Springer-Verlag.
Longstaff, B., Reddy, S., and Estrin, D. (2010). Improving
activity classification for health applications on mo-
bile devices using active and semi-supervised learn-
ing. In Proceedings of the 4th International ICST
Conference on Pervasive Computing Technologies for
Healthcare, pages 1–7.
Maurer, U., Smailagic, A., Siewiorek, D., and Deisher, M.
(2006). Activity Recognition and Monitoring Using
Multiple Sensors on Different Body Positions. In In-
ternational Workshop on Wearable and Implantable
Body Sensor Networks (BSN’06), pages 113–116.
IEEE.
P
¨
arkk
¨
a, J., Ermes, M., Korpip
¨
a
¨
a, P., M
¨
antyj
¨
arvi, J., Peltola,
J., and Korhonen, I. (2006). Activity classification us-
ing realistic data from wearable sensors. IEEE Trans-
actions on Information Technology in Biomedicine.
Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Forster,
K., Troster, G., Lukowicz, P., Bannach, D., Pirkl, G.,
Ferscha, A., Doppler, J., Holzmann, C., Kurz, M.,
Holl, G., Chavarriaga, R., Sagha, H., Bayati, H., Crea-
tura, M., and Millan, J. d. R. (2010). Collecting com-
plex activity datasets in highly rich networked sensor
environments. In 2010 Seventh International Con-
ference on Networked Sensing Systems (INSS), pages
233–240. IEEE.
Stikic, M., Van Laerhoven, K., and Schiele, B. (2008). Ex-
ploring semi-supervised and active learning for activ-
ity recognition. 2008 12th IEEE International Sympo-
sium on Wearable Computers, pages 81–88.
Tsipouras, M. G., Tzallas, A. T., Rigas, G., Tsouli, S., Fo-
tiadis, D. I., and Konitsiotis, S. (2012). An automated
methodology for levodopa-induced dyskinesia: as-
sessment based on gyroscope and accelerometer sig-
nals. Artificial intelligence in medicine, 55(2):127–35.
van Kasteren, T., Noulas, A., Englebienne, G., and Kr
¨
ose,
B. (2008). Accurate activity recognition in a home set-
ting. In Proceedings of the 10th international confer-
ence on Ubiquitous computing - UbiComp ’08, New
York, New York, USA. ACM Press.
Vondrick, C., Patterson, D., and Ramanan, D. (2013).
Efficiently Scaling up Crowdsourced Video Anno-
tation. International Journal of Computer Vision,
101(1):184–204.
Woznowski, P. (2013). Rule-based semantic sensing plat-
form for activity monitoring. PhD thesis, Cardiff Uni-
versity.
Woznowski, P., Fafoutis, X., Song, T., Hannuna, S.,
Camplani, M., Tao, L., Paiement, A., Mellios, E.,
Haghighi, M., Zhu, N., et al. (2015). A multi-modal
sensor infrastructure for healthcare in a residential en-
vironment. In IEEE ICC Workshop on ICT-enabled
services and technologies for eHealth and AAL.
A Human Activity Recognition Framework for Healthcare Applications: Ontology, Labelling Strategies, and Best Practice
377