5 CONCLUSIONS
RADICAL platform, as presented in the current
work, successfully combines citizens' posts retrieved
through smartphone applications and Social
Networks in the context of smart city applications, to
produce a testbed for applying multiple analysis
functionalities and techniques. The exploitation of
resulting big aggregated datasets pose multiple
challenges, with timely-efficient analysis being the
most important. Focusing on data storage and
representation, multiple techniques were examined
in the experiments performed, in order to come up
with the optimal algorithmic approach of
Dimensional Mapping. In the future the authors plan
to use even larger and more complex datasets,
further leveraging on the effectiveness of these
social networking services.
ACKNOWNLEDGEMENTS
This work has been supported by RADICAL and
Consensus projects and has been funded by the
European Commission's Competitiveness and
Innovation Framework Programme under grant
agreements no 325138 and 611688 respectively.
REFERENCES
Aisopos, F., 0001, G.P., Tserpes, K., Varvarigou, T.A.,
2012. Content vs. context for sentiment analysis: a
comparative analysis over microblogs., in: Munson,
E.V., Strohmaier, M. (Eds.), HT. ACM, pp. 187–196.
Amati, G., Angelini, S., Bianchi, M., Costantini, L.,
Marcone, G., 2014. A scalable approach to near real-
time sentiment analysis on social networks. Inf. Filter.
Retr. 12.
Apache Mahout: Scalable machine learning and data
mining [WWW Document], n.d. URL
http://mahout.apache.org/ (accessed 4.8.15).
Bifet, A., Frank, E., 2010. Sentiment Knowledge
Discovery in Twitter Streaming Data, in: Proceedings
of the 13th International Conference on Discovery
Science, DS’10. Springer-Verlag, Berlin, Heidelberg,
pp. 1–15.
Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B., 2010.
MOA: Massive Online Analysis. J. Mach. Learn. Res.
11, 1601–1604.
Breslin, J., Decker, S., 2007. The Future of Social
Networks on the Internet: The Need for Semantics.
IEEE Internet Comput. 11, 86–90.
doi:10.1109/MIC.2007.138.
Breslin, J.G., Decker, S., Hauswirth, M., Hynes, G.,
Phuoc, D.L., Passant, A., Polleres, A., Rabsch, C.,
Reynolds, V., 2009. Integrating Social Networks and
Sensor Networks, in: Proceedings on the W3C
Workshop on the Future of Social Networking.
Calabrese, F., Kloeckl, K., Ratti, C., 2007. Wikicity: Real-
time location-sensitive tools for the city IEEE
Pervasive Computing, 390–413.
Conti, M., Passarella, A., Pezzoni, F., 2011. A model for
the generation of social network graphs., in:
WOWMOM. IEEE Computer Society, pp. 1–6.
Fan, M., Khademi, M., 2014. Predicting a Business Star in
Yelp from Its Reviews Text Alone. CoRR
abs/1401.0864.
Giannakopoulos, G., Karkaletsis, V., Vouros, G.A.,
Stamatopoulos, P., 2008. Summarization system
evaluation revisited: N-gram graphs. TSLP 5.
Godbole, N., Srinivasaiah, M., Skiena, S., 2007. Large-
Scale Sentiment Analysis for News and Blogs, in:
Proceedings of the International Conference on
Weblogs and Social Media (ICWSM).
GrowSmarter, 2016. Grow Smarter project [WWW
Document]. URL http://www.grow-smarter.eu/home/
Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., 2012.
Internet of Things (IoT): A Vision, Architectural
Elements, and Future Directions. CoRR
abs/1207.0203.
He, Q., Zhuang, F., Li, J., Shi, Z., 2010. Parallel
Implementation of Classification Algorithms Based on
MapReduce, in: Yu, J., Greco, S., Lingras, P., Wang,
G., Skowron, A. (Eds.), Rough Set and Knowledge
Technology, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 655–662.
Hernández-Muñoz, J.M., Vercher, J.B., Muñoz, L.,
Galache, J.A., Presser, M., Gómez, L.A.H., Pettersson,
J., 2011. Smart Cities at the Forefront of the Future
Internet., in: Domingue, J., Galis, A., Gavras, A.,
Zahariadis, T.B., Lambert, D., Cleary, F., Daras, P.,
Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V.,
Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S.,
Nilsson, M. (Eds.), Future Internet Assembly, Lecture
Notes in Computer Science. Springer, pp. 447–462.
Liu, B., Blasch, E., Chen, Y., Shen, D., Chen, G., 2013.
Scalable sentiment classification for Big Data analysis
using Na #x00EF;ve Bayes Classifier, in: Big Data,
2013 IEEE International Conference on. pp. 99–104.
doi:10.1109/BigData.2013.6691740.
Marz, N., Warren, J., 2015. Big Data: Principles and best
practices of scalable realtime data systems, 1 edition.
ed. Manning Publications, Westampton.
MEKA: A Multi-label Extension to WEKA [WWW
Document], n.d. URL http://meka.sourceforge.net/
(accessed 3.27.15).
Miluzzo, E., Lane, N.D., Eisenman, S.B., Campbell, A.T.,
2007. CenceMe - Injecting Sensing Presence into
Social Networking Applications., in: Kortuem, G.,
Finney, J., Lea, R., Sundramoorthy, V. (Eds.),
EuroSSC, Lecture Notes in Computer Science.
Springer, pp. 1–28.
Murty, R., Gosain, A., Tierney, M., Brody, A., Fahad, A.,
Bers, J., Welsh, M., 2007. Harvard University
Technical Report. TR1307.