Telegraphcq: Continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, Cal-
ifornia, USA, June 9-12, 2003, page 668.
Chandrasekaran, S. and Franklin, M. J. (2002). Streaming
queries over streaming data. In VLDB 2002, Proceed-
ings of 28th International Conference on Very Large
Data Bases, August 20-23, 2002, Hong Kong, China,
pages 203–214.
Cherniack, M., Balakrishnan, H., Balazinska, M., Carney,
D., Çetintemel, U., Xing, Y., and Zdonik, S. B. (2003).
Scalable distributed stream processing. In CIDR.
Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M.,
Gerth, J., Talbot, J., Elmeleegy, K., and Sears, R.
(2010). Online aggregation and continuous query
support in mapreduce. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
June 6-10, 2010, pages 1115–1118.
Falt, Z., Bednárek, D., Krulis, M., Yaghob, J., and Zavoral,
F. (2014). Bobolang: a language for parallel streaming
applications. In The 23rd International Symposium on
High-Performance Parallel and Distributed Comput-
ing, HPDC’14, Vancouver, BC, Canada - June 23 - 27,
2014, pages 311–314.
Ganglia (2015). Ganglia. http://ganglia.sourceforge.net/.
[Online; accessed 24-November-2015].
Gedik, B., Yu, P. S., and Bordawekar, R. (2007). Executing
stream joins on the cell processor. In Proceedings of
the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-
27, 2007, pages 363–374.
Grinev, M., Grineva, M. P., Hentschel, M., and Kossmann,
D. (2011). Analytics for the realtime web. PVLDB,
4(12):1391–1394.
Gui, H. and Roantree, M. (2013a). Topological xml data
cube construction. International Journal of Web En-
gineering and Technology, 8(4):347–368.
Gui, H. and Roantree, M. (2013b). Using a pipeline
approach to build data cube for large xml data
streams. In Database Systems for Advanced Appli-
cations, pages 59–73. Springer Berlin Heidelberg.
Gulisano, V., Jiménez-Peris, R., Patiño-Martínez, M., and
Valduriez, P. (2010). Streamcloud: A large scale
data streaming system. In 2010 International Con-
ference on Distributed Computing Systems, ICDCS
2010, Genova, Italy, June 21-25, 2010, pages 126–
137.
Infiniband (2015). Infiniband. http://www.infinibandta.org/.
[Online; accessed 24-November-2015].
InfoSphere streams (2015). InfoSphere streams. http://
www-03.ibm.com/software/products/en/infosphere-
streams. [Online; accessed 19-October-2015].
Kang, J., Naughton, J. F., and Viglas, S. (2003). Evaluating
window joins over unbounded streams. In Proceed-
ings of the 19th International Conference on Data En-
gineering, March 5-8, 2003, Bangalore, India, pages
341–352.
Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A.
(2005). Semantics and evaluation techniques for win-
dow aggregates in data streams. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, Baltimore, Maryland, USA, June 14-16,
2005, pages 311–322.
Madden, S., Shah, M. A., Hellerstein, J. M., and Raman,
V. (2002). Continuously adaptive continuous queries
over streams. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of
Data, Madison, Wisconsin, June 3-6, 2002, pages 49–
60.
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu,
S., Datar, M., Manku, G. S., Olston, C., Rosenstein,
J., and Varma, R. (2003). Query processing, approx-
imation, and resource management in a data stream
management system. In CIDR.
MVAPICH2, The Ohio State University (2015). MVA-
PICH2, The Ohio State University. http://
mvapich.cse.ohio-state.edu/. [Online; accessed 24-
November-2015].
Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010).
S4: Distributed stream computing platform. In Pro-
ceedings of the 2010 IEEE International Conference
on Data Mining Workshops, ICDMW ’10, pages 170–
177, Washington, DC, USA. IEEE Computer Society.
Peng, D. and Dabek, F. (2010). Large-scale incremental
processing using distributed transactions and notifica-
tions. In 9th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2010, Octo-
ber 4-6, 2010, Vancouver, BC, Canada, Proceedings,
pages 251–264.
Plimpton, S. J. and Shead, T. M. (2014). Streaming data an-
alytics via message passing with application to graph
algorithms. J. Parallel Distrib. Comput., 74(8):2687–
2698.
Slurm (2015). Slurm. http://slurm.schedmd.com/. [Online;
accessed 24-November-2015].
Teubner, J. and Müller, R. (2011). How soccer players
would do stream joins. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, pages 625–636.
Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Pa-
tel, J. M., Kulkarni, S., Jackson, J., Gade, K., Fu, M.,
Donham, J., Bhagat, N., Mittal, S., and Ryaboy, D. V.
(2014). Storm@twitter. In International Conference
on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 147–156.
Trident (2012). Trident. http://storm.apache.org/
documentation/Trident-tutorial.html. [Online; ac-
cessed 24-November-2015].
Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I.
(2012). Discretized streams: An efficient and fault-
tolerant model for stream processing on large clus-
ters. In 4th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’12, Boston, MA, USA, June 12-
13, 2012.
DATA 2016 - 5th International Conference on Data Management Technologies and Applications
24