REFERENCES
Adams, E., Ip, B., n.d. From Casual to Core: A Statistical
Mechanism for Studying Gamer Dedication [WWW
Document]. URL http://www.gamasutra.com/view/fea
ture/131397/from_casual_to_core_a_statistical_.php
(accessed 1.5.15).
Allison, B.Z., Neuper, C., 2010. Could Anyone Use a BCI?,
in: Tan, D.S., Nijholt, A. (Eds.), Brain-Computer
Interfaces, Human-Computer Interaction Series.
Springer London, pp. 35–54.
Bangor, A., Kortum, P., Miller, J., 2009. Determining What
Individual SUS Scores Mean: Adding an Adjective
Rating Scale. J Usability Stud. 4, 114–123.
Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A.,
Davis, G., Zivkovic, V.T., Olmstead, R.E., Tremoulet,
P.D., Craven, P.L., 2007. EEG Correlates of Task
Engagement and Mental Workload in Vigilance,
Learning, and Memory Tasks. Aviat. Space Environ.
Med. 78, B231–B244.
Bermudez i Badia, S., Cameirao, M.S., 2012. The
Neurorehabilitation Training Toolkit (NTT): A Novel
Worldwide Accessible Motor Training Approach for
At-Home Rehabilitation after Stroke. Stroke Res. Treat.
2012. doi:10.1155/2012/802157.
Boostani, R., Moradi, M.H., 2004. A new approach in the
BCI research based on fractal dimension as feature and
Adaboost as classifier. J. Neural Eng. 1, 212–217.
doi:10.1088/1741-2560/1/4/004.
Brooke, J., 1996. SUS-A quick and dirty usability scale.
Usability Eval. Ind. 189, 194.
Cincotti, F., Kauhanen, L., Aloise, F., Palomäki, T.,
Caporusso, N., Jylänki, P., Mattia, D., Babiloni, F.,
Vanacker, G., Nuttin, M., Marciani, M.G., Millán, J. del
R., 2007. Vibrotactile Feedback for Brain-Computer
Interface Operation. Comput. Intell. Neurosci. 2007,
e48937. doi:10.1155/2007/48937.
Delorme, A., Makeig, S., 2004. EEGLAB: an open source
toolbox for analysis of single-trial EEG dynamics
including independent component analysis. J.
Neurosci. Methods 134, 9–21. doi:10.1016/j.jneumeth
.2003.10.009.
Dickstein, R., Deutsch, J.E., Yoeli, Y., Kafri, M., Falash,
F., Dunsky, A., Eshet, A., Alexander, N., 2013. Effects
of Integrated Motor Imagery Practice on Gait of
Individuals With Chronic Stroke: A Half-Crossover
Randomized Study. Arch. Phys. Med. Rehabil. 94,
2119–2125. doi:10.1016/j.apmr.2013.06.031.
Dobkin, B.H., 2007. Brain-computer interface technology
as a tool to augment plasticity and outcomes for
neurological rehabilitation. J. Physiol. 579, 637–642.
doi:10.1113/jphysiol.2006.123067.
Eaves, D.L., Haythornthwaite, L., Vogt, S., 2014. Motor
imagery during action observation modulates automatic
imitation effects in rhythmical actions. Front. Hum.
Neurosci. 8. doi:10.3389/fnhum.2014.00028.
Friedman, D., 2015. Brain-Computer Interfacing and
Virtual Reality, in: Nakatsu, R., Rauterberg, M.,
Ciancarini, P. (Eds.), Handbook of Digital Games and
Entertainment Technologies. Springer Singapore, pp.
1–22.
Garcia, G.N., Ebrahimi, T., Vesin, J., 2003. Support vector
EEG classification in the Fourier and time-frequency
correlation domains, in: First International IEEE EMBS
Conference on Neural Engineering, 2003. Conference
Proceedings. Presented at the First International IEEE
EMBS Conference on Neural Engineering, 2003.
Conference Proceedings, pp. 591–594. doi:10.1109/C
NE.2003.1196897.
Girouard, A., Solovey, E.T., Hirshfield, L.M., Chauncey,
K., Sassaroli, A., Fantini, S., Jacob, R.J.K., 2009.
Distinguishing Difficulty Levels with Non-invasive
Brain Activity Measurements, in: Gross, T., Gulliksen,
J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O.,
Winckler, M. (Eds.), Human-Computer Interaction –
INTERACT 2009, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 440–452.
Gomez-Rodriguez, M., Peters, J., Hill, J., Schölkopf, B.,
Gharabaghi, A., Grosse-Wentrup, M., 2011. Closing
the sensorimotor loop: haptic feedback facilitates
decoding of motor imagery. J. Neural Eng. 8, 036005.
doi:10.1088/1741-2560/8/3/036005.
Gwak, K., Leeb, R., Millan, J.D.R., Kim, D.-S., 2014.
Quantification and reduction of visual load during BCI
operation, in: 2014 IEEE International Conference on
Systems, Man and Cybernetics (SMC). Presented at the
2014 IEEE International Conference on Systems, Man
and Cybernetics (SMC), pp. 2795–2800. doi:10.1109/
SMC.2014.6974352.
Hanakawa, T., 2015. Organizing motor imageries.
Neurosci. Res. doi:10.1016/j.neures.2015.11.003.
Hart, S.G., Staveland, L.E., 1988. Development of NASA-
TLX (Task Load Index): Results of Empirical and
Theoretical Research, in: Meshkati, P.A.H. and N.
(Ed.), Advances in Psychology, Human Mental
Workload. North-Holland, pp. 139–183.
Hattie, J., Timperley, H., 2007. The Power of Feedback.
Rev. Educ. Res. 77, 81–112. doi:10.3102/003465430
298487.
Hinterberger, T., Neumann, N., Pham, M., Kübler, A.,
Grether, A., Hofmayer, N., Wilhelm, B., Flor, H.,
Birbaumer, N., 2004. A multimodal brain-based
feedback and communication system. Exp. Brain Res.
154, 521–526. doi:10.1007/s00221-003-1690-3.
IJsselsteijn, W., Poels, K., de Kort, Y.A., 2008. The Game
Experience Questionnaire: Development of a self-
report measure to assess player experiences of digital
games. TU Eindh. Eindh. Neth.
Jeunet, C., Vi, C., Spelmezan, D., N’Kaoua, B., Lotte, F.,
Subramanian, S., 2015. Continuous Tactile Feedback
for Motor-Imagery Based Brain-Computer Interaction
in a Multitasking Context, in: Abascal, J., Barbosa, S.,
Fetter, M., Gross, T., Palanque, P., Winckler, M. (Eds.),
Human-Computer Interaction – INTERACT 2015,
Lecture Notes in Computer Science. Springer
International Publishing, pp. 488–505.
Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C., 1999.
The ten-twenty electrode system of the International
Federation. The International Federation of Clinical