accuracy, speed and robustness. Information
Technology and Management, 14 (2). p. 105-124.
Fawcett, T. (2006). An introduction to ROC analysis.
Journal Pattern Recognition Letters - Special issue:
ROC analysis in pattern recognition, 27(8). p. 861-
874.
Fayyad, M. U., Piatetsky-Shapiro, G. and Smyth, P.
(1996) Advances in knowledge discovery and data
mining. p. 1-34. American Association for Artificial
Intelligence, Menlo Park, CA.
Fernández, A., Río, S., López, V., Bawakid, A., Jesus, M.
J., Benítez, J. M., & Herrera, F. (2014) Big Data with
Cloud Computing: an insight on the computing
environment, MapReduce, and programming
frameworks. WIREs Data Mining Knowledge
Discovery, 4. p. 380-409.
Goebel, M. & Gruenwald, L. (1999) A survey of data
mining and knowledge discovery software tools. ACM
SIGKDD Explorations Newsletter, Vol. 1, No., 1, pp.
20-33.
Grzymala-Busse, J, W. & Marepally, S, R. (2010)
Sensitivity and Specificity for Mining Data with
Increased Incompleteness. Artificial Intelligence and
Soft Computing. Volume 6113 of the series Lecture
Notes in Computer Science. p. 355-362.
Hanczar, B., Hua, J., Sima, C., Weinstein, J., Bittner, M.,
Dougherty, E, R. (2010). Small-sample precision of
ROC-related estimates. Bioinformatics, Vol. 26, No.,
6, pp. 822-830.
Hand, D, J. (2009). Measuring classifier performance: a
coherent alternative to the area under the ROC curve,
Vol. 77, No., 1, pp. 103-123.
Hasim, N. & Haris, A. N. (2015) A study of open-source
data mining tools for forecasting. IMCOM '15
Proceedings of the 9th International Conference on
Ubiquitous Information Management and
Communication. Article nº79.
Jović, A., Brkic, K. and Bogunovic, N. (2014) An
overview of free software tools for general data
mining. 37th International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO). p. 1112 – 1117.
KNIME. [Online] Avaliable from http://www.knime.org
[Accessed: 2nd December 2015].
Lichman, M. (2013). UCI Machine Learning Repository
[Online] Available from http://archive.ics.uci.edu/ml
[Accessed: 2nd December 2015] Irvine, CA:
University of California, School of Information and
Computer Science.
Medri, D. (2013) Big Data & Business: An on-going
revolution. [Online] Available from
http://www.statisticsviews.com/details/feature/539325
1/Big-Data--Business-An-on-going-revolution.html
[Accessed: 30th November 2015]
O’Brien, J. A. and Marakas, G. M. (2011) Management
Information Systems, 10th Edition, McGraw-Hill,
New York, USA.
Petre, R. (2013). Data Mining Solutions for the Business
Environment. Database Systems Journal, 4 (4), p. 21-
29.
Powers, D. (2007). Evaluation: From Precision, Recall and
F-Factor to ROC, Informedness, Markedness &
Correlation. Technical Report SIE-07-001. School of
Informatics and Engineering, Adelaide, Australia.
Rajagopal, S. (2011). Customer Data Clustering Using
Data Mining Technique. International Journal of
Database Management Systems (IJDMS), 3 (4), p. 1-
12.
RapidMiner. [Online] Available from http://
rapidminer.com [Accessed: 2nd December 2015].
Shen, D., Ruvini, J. & Sarwar B. (2012) Large-scale item
categorization for e-commerce. CIKM '12 Proceedings
of the 21st ACM International Conference on
Information and Knowledge Management. p. 595-604.
Wahbeh, A., Al-Radaieh, Q., Al-Kabi, M., & Al-
Shawakfa, E. (2011) International Journal of
Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence. p. 18-26.
Witten, H. I., Frank, E. & Hall, A. M. (2011) Data Mining:
Practical Machine Learning Tools and Techniques, 3rd
Edition. Morgan Kaufmann, Massachusetts.