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Abstract: This paper studies a second cumulant/h-infinity control problem with multiple players for a nonlinear stochas-
tic system on a finite-horizon. The second cumulant/h-infinity control problem, which is a generalization of the
higher-order multi-objective control problem, involves a control method with multiple performance indices.
The necessary condition for the existence of Nash equilibrium strategies for the second cumulant/h-infinity
control problem is given by the coupled Hamilton-Jacobi-Bellman (HJB) equations. In addition, a three-
player Nash strategy is derived for the second cumulant/h-infinity control problem. A simulation example is
given to illustrate the application of the proposed theoretical formulations.

1 INTRODUCTION

Higher-order control problems (Won et al., 2010)
for stochastic systems have been investigated in re-
cent years and related to multi-objective control the-
oretical game formulations (Lee et al., 2010). In
multi-objective control problems, the control method
must concern itself with multiple performance in-
dices. A typical multi-objective control problem for
both stochastic and deterministic systems can be for-
mulated as mixedH2/H∞ control, where the control
wishes to minimize anH2 norm while keeping theH∞
norm constrained. In fact,H2/H∞ control problem is
a robust control method which requires a controller to
minimize theH2 performance while attenuating the
worst case external disturbance. This approach was
investigated in (Bernstein and Hassas, 1989), while
the Nash game approach to the problem was given in
(Limebeer et al., 1994). In (Basar and Olsder, 1999),
a two-player game involving control and disturbance
was analyzed, where both players wished to optimize
their respective performance indices when the other
player plays their equilibrium strategy.

In this paper, mixed second cumulant/h-infinity
(second cumulant/H∞) control problem with multiple
players is investigated for a nonlinear stochastic sys-
tem. Why second cumulant/H∞ as compared to first
cumulant/H∞ or (H2/H∞). Earlier studies in (Won
et al., 2010) have shown that higher-order cumu-
lants offer the control engineer additional degrees of
freedom to improve system performance through the

shaping of the cost function distribution. As a result
of this opportunity, there is need to investigate higher-
order cumulant to worst case disturbance effects on
dynamic systems. The second cumulant/h-infinity
control problem involves simultaneous optimization
of the higher-order statistical properties of each indi-
vidual player’s cost function distribution through cu-
mulants while keeping theH∞ norm constrained. The
optimization of cost function distribution through cost
cumulant was initiated by Sain (Sain, 1966), (Sain
and Liberty, 1971). Linear quadratic statistical game
with related application such as satellite systems was
investigated in (Lee et al., 2010) while an output feed-
back approach to higher-order statistical game was
studied in (Aduba and Won, 2015).

As an extension of the foregoing studies in (Lee
et al., 2010), (Aduba and Won, 2015) and the ref-
erences there in, a nonlinear system of three players
with quadratic cost function which is a non trivial ex-
tension is considered. Typical multi-objective con-
trol problem applications are in large-scale systems
such as computer communications networks, electric
power grid networks and manufacturing plant net-
works (Bauso et al., 2008), (Charilas and Panagopou-
los, 2010) while the higher-order multi-objective con-
trol application has been reported for satellite network
(Lee et al., 2010). The rest of this paper is organized
as follows. In Section 2, the mathematical prelim-
inaries and second cumulant/h-infinity control prob-
lem for a completely observed nonlinear system with
multiple players; which is formulated as a nonzero-
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sum differential game problem are given. Section 3
states and proves the necessary condition for the exis-
tence of Nash equilibrium strategies while Section 4
derives the optimal players strategy based on solving
coupled Hamilton-Jacobi-Bellman equations which is
the main result of this paper. Section 5 gives the
numerical approximate method for solving the cou-
pled Nash game Hamilton-Jacobi-Bellman equations
while a numerical example is demonstrated in Section
6. Finally, the conclusions are drawn in Section 7.

2 PROBLEM FORMULATION

Consider a 3-player nonlinear stochastic state dynam-
ics given by the following it ˆo-type differential equa-
tion:

dx(t) = f (t,x(t),u1(t),u2(t),v(t))dt+σ(x(t))dw(t),

z(t) =Cx(t)+D1u1(t)+D2u2(t),
(1)

where t ∈ [t0, tF ] = T, x(t) ∈ Rn is the state and
x(t0) = x0, uk(t)∈Uk ⊂Rm is thek-th player strategy,
k = 1,2, vk(t) ∈ Vk ⊂ Rm is the external disturbance
player anddw(t) is a Gaussian random process of di-
mensiond with zero mean, covariance ofW(t)dt. Let
Q0 = [t0, tF)×Rn andQ̄0 is the closure ofQ0.

f andσ are Borel measurable functions given as
f : C1(Q̄0 ×Uk ×Uk ×Vk) and σ : C1(Q̄0). In ad-
dition, f and σ satisfy Lipschitz and linear growth
conditions (Arnold, 1974) whilez(t) is the regu-
lated output of the stochastic system. Letuk(t) =
µk(t,x),v(t) = ν(t,x), t ∈ T be memoryless state feed-
back strategies withµk(t,x),ν(t,x) satisfying Lips-
chitz and linear growth condition and thus are admis-
sible strategies. It is shown in (Fleming and Rishel,
1975) that a processx(t) from (1) having admissible
strategies together with polynomial growth condition
ensures thatE‖x(t)‖2 is finite.

The backward evolution operator,O(µ1,µ2,ν)
(Sain et al., 2000):O = O1+O2 is introduced

O1(µ1,µ2,ν) =
∂
∂t

+ f ′(t,x,µ1,µ2,ν)
∂
∂x

,

O2(µ1,µ2,ν) =
1
2

tr

(
σWσ′ ∂2

∂x2

)
,

(2)

where tr is the trace operator The cost function(Jk)
for thek-th player is given as:

Jk(t,x,µ1,µ2,ν) =
∫ tF

t
Lk(s,x(s),µ1,µ2,ν)ds

+ψk(x(tF )) or

Jk(t,x,µ1,µ2,ν) =
∫ tF

t
z
′
k(t)zk(t)ds+ψk(x(tF)),

(3)

wherek = 1,2, Lk is the running cost andψk is the
terminal cost with both (Lk,ψk) satisfying polyno-
mial growth condition. Thezk in (3) is defined as
zk(t) = x

′
(t)Q(t)x(t) + u

′
kRkuk(t), Q(t) = Q

′
(t) ≥ 0,

Rk = R
′
k > 0.

The cost function(J) for ν is given as:

J(t,x,µ1,µ2,ν) =
∫ tF

t
L(s,x(s),µ1,µ2,ν)ds

+ψ(x(tF)) or

J(t,x,µ1,µ2,ν) =
∫ tF

t

(
ρ2ν

′
(t)ν(t)− z

′
(t)z(t)

)
ds

+ψ(x(tF)),
(4)

whereL is the running cost andψ is the terminal cost
with both (L,ψ) satisfying polynomial growth condi-
tion. Also, ρ > 0 is the constraint on theH∞ of the
system.

To study the cumulant game of cost function, the
m-th moments of cost functionsMk

m of thek-th player
is defined as:

Mk
m(t,x,µ1,µ2) = E

{
(Jk)m(t,x,µ1,µ2)|x(t) = x

}
,

(5)
where m = 1,2. The m-th cost cumulant function
Vk

m(t,x) of thek-th player is defined by (Smith, 1995),

Vk
m(t,x) = Mk

m−
m−2

∑
i=0

(m−1)!
i!(m−1− i)!

Mk
m−1−iV

k
i+1,

(6)
wheret ∈ T = [t0, tF ], x(t0) = x0, x(t) ∈Rn. Next, the
following definitions are given:

Definition 2.1: A functionMk
i ,V

k
i : Q0 →R+ is an

admissiblei-th moment cost function if there exists a
strategyµk such that

Mk
i (t,x) = Mk

i (t,x;µ1,µ2,ν),

Vk
i (t,x) =Vk

i (t,x;µ1,µ2,ν),
(7)

for t ∈ T,x∈Rn, i = 1,2.
Definition 2.2: The players equilibrium strategy

µ∗1,µ
∗
2 is such that

M1∗
i (t,x) = M1

i (t,x,µ
∗
1,µ

∗
2,ν

∗)≤ M1
i (t,x,µ

∗
1,µ2,ν),

V1∗
i (t,x) =V1

i (t,x,µ
∗
1,µ

∗
2,ν

∗)≤V1
i (t,x,µ

∗
1,µ2,ν),

M2∗
i (t,x) = M1

i (t,x,µ
∗
1,µ

∗
2,ν∗)≤ M1

i (t,x,µ1,µ
∗
2,ν),

V2∗
i (t,x) =V1

i (t,x,µ
∗
1,µ

∗
2,ν

∗)≤V1
i (t,x,µ1,µ

∗
2,ν).

(8)
The moment (5), moment-cumulant relationship (6),
definition 2.1 (7) and definition 2.2 (8) all hold for the
external disturbance player (ν) as well.

Problem Definition: Consider an open setQ ⊂
Q0 and let thek-th player and disturbance cost cumu-
lant functionsVk

1 (t,x),V̄1(t,x) ∈ C1,2
p (Q) ∩C(Q̄) be
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an admissible cumulant function. Assume the exis-
tence of optimal players strategiesµ∗1,µ

∗
2,ν

∗ and op-
timal players value functionsVk∗

2 (t,x),V̄∗
2 (t,x), thus,

the multi-player second cumulant/H∞ control problem
is to find the Nash strategiesµ∗1,µ

∗
2,ν

∗ which result in
the minimal second value functionsVk∗

2 (t,x),V̄∗
2 (t,x)

while satisfying the systemH∞ constraint. Thus,µ∗k
is the second cumulant/H∞ optimal strategy andν∗ is
the external disturbance strategy.

Remark: To find the Nash strategiesµ∗1,µ
∗
2,ν

∗, we
constrain the candidates of the optimal players strat-
egy toUM1,UM2,UM̄ and the optimal value functions
Vk∗

2 (t,x),V̄∗
2 (t,x) are found with the assumption that

lower order cumulants,Vk
1 ,V̄1 are admissible.

3 SECOND CUMULANT HJB
EQUATION

Theorem 3.1: Let Mk
j (t,x) ∈ C1,2

p (Q)∩C(Q̄) be the
admissible moment cost function, if there exists an
optimalk-th player strategyµ∗k such thatMk∗

j (t,x) =

Mk
j (t,x,µ

∗
1,µ

∗
2,ν

∗), t ∈ T = [t0, tF ] then,

O
[
Mk∗

j (t,x)
]
+ jMk

j−1(t,x)Lk(t,x,µ1,µk,ν) = 0,

(9)
whereMk

j (tF ,x) = ψ j
k(x(tF )), j = 1,2 andk= 1,2.

Remark: This theorem is an extension of Theo-
rem 3.1 in (Won et al., 2010) which considered only a
single player in a statistical optimal control problem.
This theorem is applied in this multi-player game.

Theorem 3.2: The necessary condition for Nash
equilibrium using thek-th player; k = 1,2 as refer-
ence is stated and proven. However, similar prove
holds with disturbanceν as reference. Consider a
3-player nonlinear system (1) with cost functional
(3),(4) of fixed duration[t0, tF ]. LetVk

1 (t,x),V
k
2 (t,x)∈

C1,2
p (Q)∩C(Q̄) be admissible value functions for the

k-th player.
Similarly, letV̄1(t,x),V̄2(t,x) ∈C1,2

p (Q)∩C(Q̄) be
admissible value functions for the disturbance player.
Assume the existence of optimal player strategyµ∗k
and an optimal value functionVk∗

2 (t,x). Then, the
minimal 2nd value functionVk∗

2 (t,x) satisfies in com-
pact form the following HJB equation for thek-th
player.

0= min
µk∈UMk

{
O(µ∗1,µ

∗
2,ν

∗)
[
Vk∗

2 (t,x)
]
+

(
∂Vk

1 (t,x)

∂x

)′
σ(t,x)W(t)σ(t,x)′

(
∂Vk

1 (t,x)

∂x

)}
,

(10)

with Vk
j (tF ,xF) = 0, j = 1,2, x(t) ∈ Rn.

Proof: LetVk
2 be a class ofC1,2

p (Q)∩C(Q̄) where
the arguments for the cumulant and moment functions
are suppressed. From (2), (6), the second cost cumu-
lantVk∗

2 satisfies

O
[
Vk∗

2

]
= O

[
Mk

2

]
−O

[
(Vk

1 )
2
]
. (11)

From (9), the functionMk
2 and running costLk satisfy

O
[
Mk

2

]
+2Mk

1Lk(t,x,µ1,µ2,ν) = 0. (12)

Using (12) in (11) gives

O
[
Vk∗

2

]
+O

[
(Vk

1 )
2
]
+2Mk

1Lk(t,x,µ1,µ2,ν) = 0.

(13)
Replacing(Mk

1)
2 with (Vk

1 )
2 in (13) gives

O
[
Vk∗

2

]
+O

[
(Vk

1 )
2
]
+2Vk

1 Lk(t,x,µ1,µ2,ν) = 0.

(14)
Further expansion of (14) gives

O
[
Vk∗

2

]
+Vk

1 O
[
Vk

1

]
+Vk

1 O
[
Vk

1

]

+

(
∂Vk

1

∂x

)′
σWσ′

(
∂Vk

1

∂x

)
+2Vk

1 Lk(t,x,µ1,µ2,ν) = 0.

(15)
Then, applying (9) to (15) gives

O
[
Vk∗

2

]
−2Vk

1 Lk(t,x,µ1,µ2,ν)

+

(
∂Vk

1

∂x

)′
σWσ′

(
∂Vk

1

∂x

)
+2Vk

1 Lk(t,x,µ1,µ2,ν) = 0.

(16)
Rearranging and eliminating terms in (16) gives

0= min
µk∈UMk

{
O(µ∗1,µ

∗
k,ν

∗)
[
Vk∗

2 (t,x)
]
+

(
∂Vk

1 (t,x)

∂x

)′
σ(t,x)W(t)σ(t,x)′

(
∂Vk

1 (t,x)

∂x

)}
,

(17)
The theorem is proved. �

Remark: The HJB equation (17) provides a nec-
essary condition for the existence of equilibrium so-
lution of the 3-player 2nd cost cumulant game. The
equilibrium solution is achieved under the constraint
that V1

1 ,V
2
1 ∈ C1,2

p (Q) ∩C(Q̄) are admissible value
functions.

4 3-PLAYER NASH STRATEGY

Theorem 4: Let Vk
1 (t,x),∈ C1,2

p (Q) ∩C(Q̄) be ad-
missible value functions for thek-th player; k =
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1,2. Also,V̄1(t,x) ∈C1,2
p (Q)∩C(Q̄) is the admissible

value function for the external disturbance(ν). The
players full state-feedback Nash strategies are given
as

µ∗k(t,x) =−1
2

R−1
k B′

k

(
∂Vk

1

∂x
+ γk

2(t)
∂Vk

2

∂x

)
,

ν∗(t,x) =− 1
2ρ2B′

3

(
∂V̄1

∂x
+ γ(t)

∂V̄2

∂x

)
,

(18)

with Vk
j (tF ,xF) = V̄j(tF ,xF) = 0 wherej = 1,2,ρ > 0

andγk
2(t),γ(t) are the Lagrange multipliers. From (1),

f (.) = g(x(t))+B1(x)u1(t)+B2(x)u2(t)+B3(x)v(t)
and from (3),Lk = x(t)′Q(t)x(t) + µ′k(x)Rk(t)µk(x),
with g : Q̄0 → Rn is C1(Q̄0), Bi(x(t)), i = 1,2,3 are
continuous real matrices andRk(t)> 0 are symmetric
matrices.

In addition,L = ρ2ν′
(t)ν(t)− z

′
(t)z(t) in (4) with

z(t) given in (1) and the matricesC,D1,D2 are con-
tinuous real matrices of appropriate dimensions with
C

′
C= D

′
1D1,D

′
2D2 = I andD

′
1C= D

′
2C= D

′
2D1 = 0.

Proof: The minimal 3-player 2nd value functions
V1∗

2 (t,x),V2∗
2 (t,x),V̄2(t,x) satisfy (10) with the con-

straint condition thatV1
1 (t,x),V

1
2 (t,x),V̄1(t,x) are ad-

missible value functions. Then, the value functions
V1

1 ,V
1
2 satisfy the following coupled partial differen-

tial equations for first playerµ1:

O(µ∗1,µ2,ν)
[
V1

1 (t,x)
]
+L1(t,x,µ1,µ2,ν) = 0,

O(µ∗1,µ2,ν)
[
V1

2 (t,x)
]
+

(
∂V1

1

∂x

)′
σWσ′

(
∂V1

1

∂x

)
= 0,

(19)
with V1

1 (tF ,xF) =V1
2 (tF ,xF) = 0. Similarly, the value

functionsV2
1 ,V

2
2 satisfy the following coupled partial

differential equations for second playerµ2:

O(µ1,µ
∗
2,ν)

[
V2

1 (t,x)
]
+L2(t,x,µ1,µ2,ν) = 0,

O(µ1,µ
∗
2,ν)

[
V2

2 (t,x)
]
+

(
∂V2

1

∂x

)′
σWσ′

(
∂V2

1

∂x

)
= 0,

(20)
with V2

1 (tF ,xF) =V2
2 (tF ,xF) = 0. Similarly, the value

functionsV̄1,V̄2 satisfy the following coupled partial
differential equations for disturbance playerν:

O(µ1,µ2,ν∗) [V̄1(t,x)]+L(t,x,µ1,µ2,ν) = 0,

O(µ1,µ2,ν∗) [V̄2(t,x)]+

(
∂V̄1

∂x

)′
σWσ′

(
∂V̄1

∂x

)
= 0,

(21)
with V̄1(tF ,xF) = V̄2(tF ,xF) = 0.

Applying Lagrange multiplier method, let
G1(µ1,µ2,ν) be formulated by converting the con-
strained coupled HJB equations (19) to unconstrained

coupled HJB equations as follows:

G1(µ1,µ2,ν) = O
[
V1

2

]
+

(
∂V1

1

∂x

)′
σWσ′

(
∂V1

1

∂x

)

+λ1
1(t)
(

O
[
V1

1

]
+L1(t,x,µ1,µ2,ν)

)
,

(22)
where λ1

1(t) is time-varying Lagrange multiplier.
Similarly, let G2(µ1,µ2,ν) be formulated by convert-
ing the constrained coupled HJB equation (20) to un-
constrained coupled HJB equations as follows:

G2(µ1,µ2,ν) = O
[
V2

2

]
+

(
∂V2

1

∂x

)′
σWσ′

(
∂V2

1

∂x

)

+λ2
1(t)
(

O
[
V2

1

]
+L2(t,x,µ1,µ2,ν)

)
,

(23)
whereλ2

1(t) is time-varying Lagrange multiplier.
Similarly, let G(µ1,µ2,ν) be formulated by con-

verting the constrained coupled HJB equation (21) to
unconstrained coupled HJB equations as follows:

G(µ1,µ2,ν) = O [V̄2]+

(
∂V̄1

∂x

)′
σWσ′

(
∂V̄1

∂x

)

+λ(t)
(

O [V̄1]+L(t,x,µ1,µ2,ν)
)
,

(24)

whereλ(t) is time-varying Lagrange multiplier.
At equilibrium state, the stationary con-

ditions are given by the partial derivative of
G1(µ1,µ2,ν),G2(µ1,µ2,ν),G(µ1,µ2,ν) in (22), (23),
(24), with respect toµ1,λ1

1(t),µ2,λ2
1(t),ν,λ(t), which

is zero. Thus, the full-state feedback Nash strategies
µ∗1,µ

∗
2,ν∗ become

µ∗1(t,x) =−1
2

R−1
1 B′

1

(
∂V1

1

∂x
+

1

λ1
1(t)

∂V1
2

∂x

)
,

µ∗2(t,x) =−1
2

R−1
2 B′

2

(
∂V2

1

∂x
+

1

λ2
1(t)

∂V2
2

∂x

)
,

ν∗(t,x) =− 1
2ρ2B′

3

(
∂V̄1

∂x
+

1
λ(t)

∂V̄2

∂x

)
.

(25)

Now, let the Lagrange multipliers in (25) be defined
as

γ1
2(t) =

1

λ1
1(t)

,γ2
2(t) =

1

λ2
1(t)

,γ(t) =
1

λ(t)
. (26)

Then, substituting (26) in (25) gives

µ∗1(t,x) =−1
2

R−1
1 B′

1

(
∂V1

1

∂x
+ γ1

2(t)
∂V1

2

∂x

)
,

µ∗2(t,x) =−1
2

R−1
2 B′

2

(
∂V2

1

∂x
+ γ2

2(t)
∂V2

2

∂x

)
,

ν∗(t,x) =− 1
2ρ2B′

3

(
∂V̄1

∂x
+ γ(t)

∂V̄2

∂x

)
.

(27)
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Thus, substituting forµ∗1,µ
∗
2,ν∗ to the 3-player 2nd

cost cumulant HJB equations (10) gives the closed
loop system form of the second cumulant/H∞ control.
The theorem is proved. �

Remark: The coupled cost cumulant HJB equa-
tion (10) provides the necessary condition for the
Nash equilibrium solution of the 3-player second
cumulant/H∞ control.

However, substituting forµ∗k in (19) or (20) for the
first cumulant HJB equation (first line of (19) or (20))
gives

∂Vk
1

∂t
+g′(x)

(
∂Vk

1

∂x

)
+

1
4

(
∂Vk

1

∂x

)′
BkR

−1
k B′

k

(
∂Vk

1

∂x

)

− 1
2

((
∂V1

1

∂x

)′
+ γ1

2

(
∂V1

2

∂x

)′)
B1R−1

1 B′
1

(
∂Vk

1

∂x

)

− 1
2

((
∂V2

1

∂x

)′
+ γ2

2

(
∂V2

2

∂x

)′)
B2R−1

2 B′
2

(
∂Vk

1

∂x

)

− 1
2ρ2

(
∂V̄1

∂x

)′
B3B′

3

(
∂Vk

1

∂x

)
− γ

2ρ2

(
∂V̄2

∂x

)′
×

B3B′
3

(
∂Vk

1

∂x

)
+

(γk
2)

2

4

(
∂Vk

2

∂x

)′
BkR

−1
k B′

k

(
∂Vk

2

∂x

)

+
γk
2

2

(
∂Vk

1

∂x

)′
BkR

−1
k B′

k

(
∂Vk

2

∂x

)

+ x
′
Qx+

1
2

tr

(
σWσ′ ∂2Vk

1

∂x2

)
= 0.

(28)
Also, substituting forµ∗k in (19) or (20) for the second
cumulant HJB equation (second line of (19) or (20))
gives

∂Vk
2

∂t
+g′(x)
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∂Vk

2

∂x

)
− 1

2ρ2

(
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∂x
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2
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∂x

)′)
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− γk
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(
∂Vk

2

∂x

)′
BkR
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k

(
∂Vk
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∂x

)

+

(
∂Vk

1

∂x

)′
σWσ′

(
∂Vk

1

∂x

)
+

1
2

tr

(
σWσ′ ∂2Vk

2
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)
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(29)
Similarly, substitutingν∗ in (21) for the first and sec-
ond cumulant HJB equations will yield closed-loop
equations as in (28) and (29). Thus, the resulting six

(6) coupled HJB equations are solved for the value
functionsVk

1 ,V
k
2 ,V̄1,V̄2.

Remark: The minimal second cumulant strate-
gies are found under constrained first cumulant at
constrained worst case disturbance related by the cost
function (4).

5 APPROXIMATE SOLUTION

The analytical solutions of HJB equations (19), (20),
(21) are difficult to find for nonlinear systems. Several
approximate methods such as power series, spectral
and pseudo-spectral, wavelength, path integral and
neural network methods have been utilized to solve
coupled HJB equations (Al’brekht, 1961), (Beard
et al., 1998), (Song and Dyke, 2011), (Kappen, 2005),
(Chen et al., 2007). In this paper, neural network ap-
proximate method is applied to solve the HJB equa-
tion. A polynomial series function is utilized to ap-
proximate the value function using the method of least
squares on a pre-defined region. The value functions
Vk

i , V̄i in (19), (20), (21) can be approximated as
Vk

i (t,x) = Vk
iL(t,x) = w′

iL(t)ΛiL(x) = ∑L
i=1wi(t)γi(x)

on t over a compact setΩ → Rn. Using the ap-
proximated value functionsVk

iL(t,x) in the HJB equa-
tions result in residual error equations. Then weighted
residual method (Finlayson, 1972) is applied to min-
imize the residual error equations and then numeri-
cally solve for the least squarew′

iL(t) weights. See
(Chen et al., 2007) for details.

6 SIMULATION RESULTS

Consider a 3-player nonlinear stochastic system with
full-state feedback information. The stochastic sys-
tem is represented as

dx(t) =
(

5x(t)+ x3(t)+3u1(t)+2u2(t)+1.5v(t)
)

dt

+ x(t)dw(t),
(30)

with the state variable defined asx(t). The three
players areu1(t),u2(t),v(t), whereu1(t),u2(t) are the
controls whilev(t) is the external disturbance. The
initial state condition is given asx(0) = 0.5 anddw(t)
in (30) is a Gaussian process with meanE{dw(t)}=
0, and covarianceE{dw(t)dw(t)′} = 0.01. The first
player cost functionJ1 is

J1(t0,x(t),u1(t)) =
∫ tF

t0

[
x2(t)+u2

1(t)
]
dt+ψ1(x(tF)),

(31)
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Figure 1: 3-Player State Trajectory and Optimal Input
Strategies.

whereψ1(x(tF)) = 0 is the terminal cost and the sec-
ond player cost functionJ2 is

J2(t0,x(t),u2(t)) =
∫ tF

t0

[
x2(t)+u2

2(t)
]
dt+ψ2(x(tF )),

(32)
whereψ2(x(tF )) = 0 is the terminal cost and the third
player cost functionJ is

J(t0,x(t),u1(t),u2(t),v(t)) =
∫ tF

t0

[
ρ2v2−

(
x2(t)+u2

1(t)

+u2
2(t)
)]

dt+ψ(x(tF )),
(33)

whereψ(x(tF)) = 0 is the terminal cost. The attenua-
tion level is set atρ= 1. In the simulation, the asymp-
totic stability region for state was arbitrarily chosen as
−1≤ x≤ 1. The final timetF was 5 seconds and ex-
ternal disturbance wasv(t) = 0.5cos(t)exp(-t).

Fig. 1(a) shows the state trajectory for noise influ-
ence with varianceσ2 = 0.01 for the 2nd cumulant/H∞

game control. The state is bounded and converged to
value close to the origin. It should be noted from Fig.
1(b), that the Nash equilibrium controls for the two
player is solved by selectingγ, γ1

2 andγ2
2 where the

value functions are minimum which in our case were
γ = 10,γ1

2 = 1 andγ2
2 = 1. In addition, we have the de-

sign freedom inγk
2 andγ values selection to enhance

system performance at the chosen attenuation level.
Remark: The second cumulant Nash strategy is

found within all admissible first cumulant strategy. A
closer look at the state trajectory 1(a) and players tra-
jectory 1(b) show that convergence to the origin is
gradual. Additional investigation is required to ver-
ify convergence rate at different attenuation levels.

7 CONCLUSION

In this paper, finite-time higher-order control with
multiple players was investigated for a nonlinear
stochastic system. The second cumulant/H∞ con-
trol problem which is a generalization of higher-order
multi-objective control problem was analyzed and the
necessary condition for the existence of Nash equi-
librium solution was given. A 3-player optimal strat-
egy was derived where a Nash game approach was
taken to minimize the different orders of the cost cu-
mulants of the players. A nonlinear example problem
was solved to evaluate the theoretical concepts. As
a future work, a more practical system example and
improved numerical approaches for fast convergence
will be explored.
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