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Abstract: This paper studies a second cumulant/h-infinity control problem with multiple players for a nonlinear stochas-
tic system on a finite-horizon. The second cumulant/h-infinity control problem, which is a generalization of the
higher-order multi-objective control problem, involves a control method with multiple performance indices.
The necessary condition for the existence of Nash equilibrium strategies for the second cumulant/h-infinity
control problem is given by the coupled Hamilton-Jacobi-Bellman (HJB) equations. In addition, a three-
player Nash strategy is derived for the second cumulant/h-infinity control problem. A simulation example is
given to illustrate the application of the proposed theoretical formulations.

1 INTRODUCTION shaping of the cost function distribution. As a result
of this opportunity, there is need to investigate higher-
Higher-order control problems (Won et al., 2010) order cumulant to worst case disturbance effects on
for stochastic systems have been investigated in re-dynamic systems. The second cumulant/h-infinity
cent years and related to multi-objective control the- control problem involves simultaneous optimization
oretical game formulations (Lee et al., 2010). In of the higher-order statistical properties of each indi-
multi-objective control problems, the control method vidual player’s cost function distribution through cu-
must concern itself with multiple performance in- mulants while keeping thid., norm constrained. The
dices. A typical multi-objective control problem for optimization of cost function distribution through cost
both stochastic and deterministic systems can be for-cumulant was initiated by Sain (Sain, 1966), (Sain
mulated as mixedH,/H. control, where the control  and Liberty, 1971). Linear quadratic statistical game
wishes to minimize ail, norm while keeping thél., with related application such as satellite systems was
norm constrained. In facH,/H., control problem is investigated in (Lee et al., 2010) while an output feed-
a robust control method which requires a controllerto back approach to higher-order statistical game was
minimize theH, performance while attenuating the studied in (Aduba and Won, 2015).
worst case external disturbance. This approach was As an extension of the foregoing studies in (Lee
investigated in (Bernstein and Hassas, 1989), while et al., 2010), (Aduba and Won, 2015) and the ref-
the Nash game approach to the problem was given inerences there in, a nonlinear system of three players
(Limebeer et al., 1994). In (Basar and Olsder, 1999), with quadratic cost function which is a non trivial ex-
a two-player game involving control and disturbance tension is considered. Typical multi-objective con-
was analyzed, where both players wished to optimize trol problem applications are in large-scale systems
their respective performance indices when the other such as computer communications networks, electric
player plays their equilibrium strategy. power grid networks and manufacturing plant net-
In this paper, mixed second cumulant/h-infinity works (Bauso et al., 2008), (Charilas and Panagopou-
(second cumulart,) control problem with multiple  los, 2010) while the higher-order multi-objective con-
players is investigated for a nonlinear stochastic sys- trol application has been reported for satellite network
tem. Why second cumulaitf, as compared to first (Lee et al., 2010). The rest of this paper is organized
cumulantH. or (Hz2/H.). Earlier studies in (Won  as follows. In Section 2, the mathematical prelim-
et al.,, 2010) have shown that higher-order cumu- inaries and second cumulant/h-infinity control prob-
lants offer the control engineer additional degrees of lem for a completely observed nonlinear system with
freedom to improve system performance through the multiple players; which is formulated as a nonzero-
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sum differential game problem are given. Section 3 wherek = 1,2, L is the running cost andy is the
states and proves the necessary condition for the existerminal cost with both Lg,J) satisfying polyno-
tence of Nash equilibrium strategies while Section 4 mial growth condition. Thez in (3) is defined as

derives the optimal players strategy based on solving z(t)

coupled Hamilton-Jacobi-Bellman equations which is
the main result of this paper. Section 5 gives the
numerical approximate method for solving the cou-

pled Nash game Hamilton-Jacobi-Bellman equations J(t, X, i, P, V) =
while a numerical example is demonstrated in Section T

6. Finally, the conclusions are drawn in Section 7.

2 PROBLEM FORMULATION

= X (OQM)X(t) + uRUk(1), Qt) = Q(t) > O,
=R >0.
The cost functior{J) for v is given as:

tF

L(s,X(S), M1, o, v)ds
Wix(e) or
K V) = / " (o v -7 020 ds
Wix(e),

(4)

Consider a 3-player nonlinear stochastic state dynam-whereL is the running cost angl is the terminal cost

ics given by the following ib-type differential equa-
tion:

dx(t) = f(t,
2(t) = Cx(t) +
(1)

wheret € [to,te] = T, X(t) € R" is the state and
X(to) = X0, Uk(t) € Ux C RMis thek-th player strategy,
k=12, w(t) € Vx c RMis the external disturbance
player anddw(t) is a Gaussian random process of di-
mensiond with zero mean, covariance bf(t)dt. Let
Qo = [to,tr) x R"andQp is the closure o).

f ando are Borel measurable functions given as
f: CHQo x Uk x Uk x Vi) ando : CY(Qp). In ad-
dition, f and o satisfy Lipschitz and linear growth
conditions (Arnold, 1974) whilez(t) is the regu-
lated output of the stochastic system. Lgft) =
Mk (t,x),v(t) =v(t,x),t € T be memoryless state feed-
back strategies withu(t,x),v(t,x) satisfying Lips-
chitz and linear growth condition and thus are admis-
sible strategies. It is shown in (Fleming and Rishel,
1975) that a procesgt) from (1) having admissible
strategies together with polynomial growth condition
ensures thak ||x(t)||? is finite.

The backward evolution operatoiQ(p, ,V)
(Sain et al., 2000)0 = 01 + O is introduced

X(t),ur(t), Uz(t), v(t))dt+ o(x(t))dw(t),

),u
D1us(t) + Daux(t),

0
(t,X, HlaHZaV)—»

0
Zaf
+ 0x

ot
i 02
OZ(ULHZ,V) = 2 <0VV0 ﬁ)

O1(p1, H2,v) =
2)

where tr is the trace operator The cost functidg)
for thek-th player is given as:

tF

Jk(t,X, “la“ZaV) = Lk( (S) M1, 2,V )
+ Wk(X(tr)) or 3)
Ktk bey) = [ A 020 (X)),
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with both () satisfying polynomial growth condi-
tion. Also, p > 0 is the constraint on the,, of the
system.

To study the cumulant game of cost function, the
m-th moments of cost functiorlss!,‘§1 of thek-th player
is defined as:

Mt s o) = E{ (9™ (t, b, Bo)IX(1) = X}
)

wherem = 1,2. Themth cost cumulant function
VK(t,x) of thek-th player is defined by (Smith, 1995),

_ m2  (m-1)!
Vin(tX) = M, = Z)m
(6)

wheret € T = [to, tr], X(to) = Xo, X(t) € R". Next, the
following definitions are given:

Definition 2.1: A functionMK VK: Qo — R* isan
admissibld-th moment cost function if there exists a
strategyi such that

ME(t,X) = ME(t,X; pa, 2, V),
\/ik(t,X) :Vik(tv)(; I-llvl-'lZvV)v
forteT,xeR",i=12.

Definition 2.2: The players equilibrium strategy
3, 15 is such that

Mil*(tvx) - Mil(taxv Hi»HE7V*) < Mil(tvxv “?Iia”ZvV)a

Vi (t,%) = Vit (6 13, 15, V) < Vi (8 X 1, b, V),

MP* (t,%) = M (£, X, 13, b5, V') < Mt X, b, 13, V),

Viz*(t7x) = Vil(tvxa Lfi» I-FévV*) < Vil(taxv M1, HEV)(S)
The moment (5), moment-cumulant relationship (6),
definition 2.1 (7) and definition 2.2 (8) all hold for the
external disturbance player)(as well.

Problem Definition: Consider an open s€ C
Qo and let thek-th player and disturbance cost cumu-

lant functionsVX(t,x),Va(t,x) € C5%(Q) NC(Q) be

Mm 1- I\/H-la

(@)
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an admissible cumulant function. Assume the exis-

tence of optimal players strategig§ 15, v* and op-
timal players value functiongk*(t,x), Vs (t,x), thus,
the multi-player second cumulaHit control problem
is to find the Nash strategigg, |55, v* which result in
the minimal second value functioh&* (t,x), V5 (t, x)
while satisfying the systerfl. constraint. Thusji
is the second cumulat4 optimal strategy and* is
the external disturbance strategy.

Remark: To find the Nash strategigg, |55, v*, we

constrain the candidates of the optimal players strat-

egy toUy1,Uy2,Uy and the optimal value functions
VS (t,x),V; (t,X) are found with the assumption that
lower order cumulantS{lk,Vl are admissible.

3 SECOND CUMULANT HJB
EQUATION

Theorem 3.1: Let MX(t,x) € C5*(Q) NC(Q) be the
admissible moment cost function, if there exists an
optimal k-th player strategys; such thatlvlﬁ-‘* (t,x) =
ME(t, X, 145, 15, V"), t € T = [to,te] then,

o [MT*(LX)} + jMIj(fl(taX)Lk(tv)(? p-lv“kvv) =0,
. (9)
whereMX(tr,X) = Yy (X(te)), j = 1,2 andk = 1,2.
Remark: This theorem is an extension of Theo-
rem 3.1 in (Won et al., 2010) which considered only a
single player in a statistical optimal control problem.
This theorem is applied in this multi-player game.
Theorem 3.2: The necessary condition for Nash
equilibrium using thek-th player;k = 1,2 as refer-

ence is stated and proven. However, similar prove

holds with disturbance as reference. Consider a
3-player nonlinear system (1) with cost functional
(3),(4) of fixed duratiorito, tr]. LetVi(t,x),VX(t,x) €
C%’Z(Q) NC(Q) be admissible value functions for the
k-th player.

Similarly, letVy (t,X), Va(t,x) € C5?(Q)NC(Q) be
admissible value functions for the disturbance player.
Assume the existence of optimal player strategy
and an optimal value functiowf*(t,x). Then, the
minimal 2'9 value functiorV¥* (t,x) satisfies in com-
pact form the following HJB equation for thieth
player.

o= mp {oise i
k ’ )
(avlT()t’X)) O'(t,X)W(t)O'(t’X)/ ((3\/167(;,)()) }7
(10)

with VK(te, xe) = 0, j = 1,2, X(t) € R".

Proof: LetVX be a class o€5?(Q) NC(Q) where
the arguments for the cumulant and moment functions
are suppressed. From (2), (6), the second cost cumu-
lantV)* satisfies

0 [vzk} -0 [M'z‘] —0 [(vlk)z} .

From (9), the functioM and running costy satisfy

(11)

0] [M‘Z‘} + 2MXL (t, X, Py, 2, v) = 0.
Using (12) in (11) gives

12)

0 [VE*] + 0 [ (VH9?] + 2MiLk(t X b, o, v) = .
(13)
ReplacingM¥)2 with (V)2 in (13) gives

0 V] + o[ (vi?| + 2ViLk(t X b be,v) = O,
(14)
Further expansion of (14) gives

0 [vz*} +Vvko [vlk} +vko [vlk]

avky’ vk
+ <a—)2-> G\NO-/(a—)iL) +2V]|_(Lk(tvxv Hl,HZ,V) =0.
(15)

Then, applying (9) to (15) gives

0 [vz*} — 2VHLi(t, X, M, Ho, V)

avk\’ VK
+ (G ) owor (5 ) + MLt e) -0
(16)

Rearranging and eliminating terms in (16) gives

iy {Owi,uﬁ,v*) V(%] +
M
MVt %) lo(t Wtk (LX)
ox ’ ’ ax ’
(17)
The theorem is proved. O

Remark: The HJB equation (17) provides a nec-
essary condition for the existence of equilibrium so-
lution of the 3-player 2 cost cumulant game. The
equilibrium solution is achieved under the constraint
that VL,V2 € C?(Q) NC(Q) are admissible value
functions.

4 3-PLAYER NASH STRATEGY

Theorem 4: Let VK(t,x), € C5(Q) NC(Q) be ad-
missible value functions for thé&-th player; k =
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1,2. Also, Vi (t,X) € Cp%(Q) NC(Q) is the admissible
value function for the external disturbantg. The
players full state-feedback Nash strategies are given Gr(ba, Ho,V) = O [Vzl] + (

coupled HJIB equations as follows:

ovi\' o fovi
W) owe <W>

+Adt) (O (Vi1 + La(t, X, pa, |.12,V)> ,

as

(23)
where)\f(t) is time-varying Lagrange multiplier.
Similarly, let G(, H2,v) be formulated by con-
verting the constrained coupled HJB equation (21) to
unconstrained coupled HJB equations as follows:
ENEAN
G (b, 2, V) = O Vo] + (6_x1) owo’

(%)
X/ (24)
A0 (O] + Lt xpr. bv) ).

where(t) is time-varying Lagrange multiplier.

At equilibrium state, the stationary con-
ditions are given by the partial derivative of
G1(Ha, M2, V), G2(Ha, b, V), G (M, b2, V) i (22), (23),
(24), with respect t@u, A1(t), o, A2(t), v, A(t), which
is zero. Thus, the full-state feedback Nash strategies
K, 15, v* become

vk vk
M (t,X) = Rk ( ! "’V; 2 )7 (22)
N oV (18) where A}(t) is time-varying Lagrange multiplier.
Vi (t,x) = B3< ! +y(t)—2>7 Similarly, let G2(pa, p2,v) be formulated by convert-
2p? 0x ox ing the constrained coupled HJB equation (20) to un-
with ij(tF,XF) :\7j (tr.xc) = O wherej = 1,2,p > 0 constrained coupled HJB equations as follows:
andyj(t),y(t) are the Lagrange multipliers. From (1), 2 <6V12)/ , <0V12>
4 M2, V) =0 V5| + | == ) oWo | —
1) LS B B(2§x> 20+ Bs0uD Golbbov) = O |+ 5 o
and from K = X(t + K (X Hk(X), 5 ,
with g : Qo — R is C1(Qq), Bi(x(t)), i = 1,2,3 are +)\1(t)<o [Vi] + La(t.x, “1’“2’\’))’
t)

continuous real matrices afij(
matrices.
In addition,L = p2v' (t)v(t) — Z (t)z(t) in (4) with
z(t) given in (1) and the matrice€,D1,D, are con-
tinuous real matrices of appropriate dimensions with
C'C=D;D4,D,D, =1 andD;C = D,C = D,D; = 0.
Proof: The minimal 3-player 2 value functions
VE(t,X), V2 (1, X), Va(t, x) satlsfy (10) with the con-
straint condition tha¥/(t,x), V. (t,x), Vi(t, x) are ad-
missible value functions. Then, the value functions
Vi,V3 satisfy the following coupled partial differen-
tial equations for first playqu:

> 0 are symmetric

O(l'qv HZaV) [Vf'(t,Xﬂ + Ll(t,X, M1, U-Zav) =0,

v\’ ovi
" 1 1) owoe' [ 22 ) =
O(Hg, ke, V) [Va (t,%)] +< ox > 7 ( ox ) >

(19)
with Yll(tF,XF) :V21.(tp,xF) =0. Similarly, the value Wt X) = —}R* 1gy <0V1 n 1l vy )
functionsV2, V2 satisfy the following coupled partial 2 ox  Az(t) ox
differential equations for second player. () = —}Rgl /2<6V1 N 1 %> (25)
O(ulvp';ﬂv) [Vlz(t,Xﬂ + LZ(taxv Ha, U'Zav) = 07 2 avax i\ (a\)7 ox
C o2 ovZ\' (V2 Vi(tx) = - 253( T30 2)'
O(ba, K5, V) [V (t,%)] + o oWa o =0, 2p 0x  A(t) ox

(20)
with V2(te, Xe ) = VZ(te,xe ) = 0. Similarly, the value
functionsVy,V, satisfy the following coupled partial
differential equations for disturbance player

O(Ha, 2, V™) [Va(t, X)] + L(t, X, pg, k2, v) =0,
ot v Vet + (B2 owor (52) <o
_ _ (21)
with V1('[|:,X|:) =V2(t|:,X|:) =0.

Applying Lagrange multiplier method, let
G1(Ha, H2,v) be formulated by converting the con-

strained coupled HJB equations (19) to unconstrained

34

Now, let the Lagrange multipliers in (25) be defined
as

B0 = 2 YD =

Ya(t) = ¥ ) %,V(t) YR (26)
Then, substituting (26) in (25) gives
0 = —3r8 (T w0 52 ).
0 =38 T g0 32 ). @)
vi(t,x) = — 202 B3<ag/xl +y(t)a—;2).
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Thus, substituting fo;, u5,v* to the 3-player nd

(6) coupled HJB equations are solved for the value

cost cumulant HIB equations (10) gives the closed funct|onsV1,V2,V1,V2

loop system form of the second cumul&hi/control.
The theorem is proved. O

Remark: The coupled cost cumulant HIB equa-
tion (10) provides the necessary condition for the
Nash equilibrium solution of the 3-player second
cumulantH., control.

However, substituting fau; in (19) or (20) for the
first cumulant HIB equation (first line of (19) or (20))

gives
VA ( ovf av1 1o, [(OVK
5 I ( BW@‘&
1 M ,_|_y1 6V2 B:R 1B M
2\ \ ox 2 TP Tox
1( (v ov2 10, [(OVS
‘é((ﬁ 4 (52) Jeren (55
1 (Vi oVf y (Vo)
%4708£<w>_$5&'x
VI (Y§)? [V, AVAS
/(YY1 2 2 —1lp/ ( ©VY2
B3B3(6x>+ 4 <6x>BRkB"<6x>

oVf

o)

) - (28)

Also, substituting fogy; in (19) or (20) for the second
cumulant HIB equation (second line of (19) or (20))

Aal)ans

02V

/ 1
+ X Qx4+ ztr <0VVO' A

gives
ovk  [aVf 1 (v g o (O
-2 —2 |- = (=2) BsB
at g(x)(ax 202 \ ax ) 7373\ ax
oV,
B 2
(ax (ax
ovi av21 Y

A V5
[3)4 2 ()4

() () s
() (3 (3
4 () ()
(e () o) -0

F) ox )2
Similarly, substitutingy* in (21) for the first and sec-
ond cumulant HIB equations will yield closed-loop
equations as in (28) and (29). Thus, the resulting six

) e
)+
ol

- 2p?
1
2 0X
1 V
2 0X

,02VK
(OVVO' Y

Remark: The minimal second cumulant strate-
gies are found under constrained first cumulant at
constrained worst case disturbance related by the cost
function (4).

5 APPROXIMATE SOLUTION

The analytical solutions of HIB equations (19), (20),
(21) are difficult to find for nonlinear systems. Several
approximate methods such as power series, spectral
and pseudo-spectral, wavelength, path integral and
neural network methods have been utilized to solve
coupled HJB equations (Al'brekht, 1961), (Beard
etal., 1998), (Song and Dyke, 2011), (Kappen, 2005),
(Chen et al., 2007). In this paper, neural network ap-
proximate method is applied to solve the HIB equa-
tion. A polynomial series function is utilized to ap-
proximate the value function using the method of least
squares on a pre-defined region. The value functions
VK Vi in (19), (20), (21) can be approximated as
V(LX) = Vi (£,%) = Wi (AL (X) = TE; wi(t)yi(x)
ont over a compact se@ — R". Using the ap-
proximated value functiongf (t, x) in the HIB equa-
tions resultin residual error equations. Then weighted
residual method (Finlayson, 1972) is applied to min-
imize the residual error equations and then numeri-
cally solve for the least squaw, (t) weights. See
(Chen et al., 2007) for details.

6 SIMULATION RESULTS

Consider a 3-player nonlinear stochastic system with
full-state feedback information. The stochastic sys-
tem is represented as

dx(t) :(5x(t) x3(t) + 3ug(t) + 2up(t) + 1.5v(t))dt
Fx(t)dw(t),
(30)

with the state variable defined agt). The three
players arei; (t),ux(t),v(t), whereus (t), ux(t) are the
controls whilev(t) is the external disturbance. The
initial state condition is given ag0) = 0.5 anddw(t)

in (30) is a Gaussian process with méafdw(t)} =

0, and covarianc&{dw(t)dw(t)'} = 0.01. The first
player cost functiod; is

Dlax®.0(0) = [ [0+ B0 dt+ gaxee)),
@

35
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Figure 1: 3-Player State Trajectory and Optimal Input
Strategies.

where1(x(tr)) = 0 is the terminal cost and the sec-

State

-0.1

08r

06

Control and Disturbance Input

State,y = 10,74 =13 =1

041

02r

25
Time (sec)

L
3

L
35

(a) State trajectory

Inputs,y =10,74 =73 =1

L L
4 45

first player - u,
second player - u,
third player - v

I
5

a5
Time (sec)

L
3

L
35

(b) Input trajectory

ond player cost functiod, is

Jlto X(1),z (1)) = |

fo

3t X0, 100,10 V1) = [ [0~ (1) +u

to

FE(0)|dt+ wixite),
(33)

where(x(tr)) = 0 is the terminal cost. The attenua-
tion level is set ap = 1. In the simulation, the asymp-
totic stability region for state was arbitrarily chosen as
—1<x< 1. The final timer was 5 seconds and ex-

L L
4 4.5

ternal disturbance wagt) = 0.5cos(t)exp(-t).
Fig. 1(a) shows the state trajectory for noise influ- Beard, R. W., Saridis, G. N., and Wen, J. T. (1998). Ap-

ence with variance? = 0.01 for the 29 cumulantHe

36

2
1

I
5

© [+ V0] dt-+ e,

(32)
wherez(X(tr)) = 0 is the terminal cost and the third
player cost functiod is

®

game control. The state is bounded and converged to
value close to the origin. It should be noted from Fig.
1(b), that the Nash equilibrium controls for the two
player is solved by selecting v andy3 where the
value functions are minimum which in our case were
y=10,y} = 1 andy3 = 1. In addition, we have the de-
sign freedom in/§ andy values selection to enhance
system performance at the chosen attenuation level.

Remark: The second cumulant Nash strategy is
found within all admissible first cumulant strategy. A
closer look at the state trajectory 1(a) and players tra-
jectory 1(b) show that convergence to the origin is
gradual. Additional investigation is required to ver-
ify convergence rate at different attenuation levels.

7 CONCLUSION

In this paper, finite-time higher-order control with
multiple players was investigated for a nonlinear
stochastic system. The second cumuldgticon-

trol problem which is a generalization of higher-order
multi-objective control problem was analyzed and the
necessary condition for the existence of Nash equi-
librium solution was given. A 3-player optimal strat-
egy was derived where a Nash game approach was
taken to minimize the different orders of the cost cu-
mulants of the players. A nonlinear example problem
was solved to evaluate the theoretical concepts. As
a future work, a more practical system example and
improved numerical approaches for fast convergence
will be explored.
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