can be spent on tuning the performance of the tem-
perature correction algorithm, e.g. by using a GPU
implementation.
ACKNOWLEDGEMENTS
This work has partly been supported within H2020-
ICT by the European Commission under grant agree-
ment number 645101 (SmokeBot).
REFERENCES
Agrawal, A., Raskar, R., Nayar, S. K., and Li, Y. (2005).
Removing photography artifacts using gradient pro-
jection and flash-exposure sampling. ACM Trans.
Graph., 24(3):828–835.
Alba, M. I., Barazzetti, L., Scaioni, M., Rosina, E., and Pre-
vitali, M. (2011). Mapping infrared data on terrestrial
laser scanning 3D models of buildings. Remote Sens-
ing, 3(9):1847–1870.
Aziz, M. Z. and Mertsching, B. (2010). Survivor search
with autonomous UGVs using multimodal overt at-
tention. In IEEE Safety Security and Rescue Robotics,
pages 1–6, Bremen, Germany.
Borrmann, D., Elseberg, J., and Nüchter, A. (2013). Ther-
mal 3D mapping of building façades. In Lee, S., Cho,
H., Yoon, K.-J., and Lee, J., editors, Intelligent Au-
tonomous Systems 12, number 193 in Advances in
Intelligent Systems and Computing, pages 173–182.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Criminisi, A., Kang, S. B., Swaminathan, R., Szeliski, R.,
and Anandan, P. (2005). Extracting layers and ana-
lyzing their specular properties using epipolar-plane-
image analysis. Computer Vision and Image Under-
standing, 97(1):51–85.
Farid, H. and Adelson, E. H. (1999). Separating reflections
and lighting using independent components analysis.
In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 1, pages 262–
267, Fort Collins, CO, USA.
Gong, X., Lin, Y., and Liu, J. (2013). 3D LIDAR-camera
extrinsic calibration using an arbitrary trihedron. Sen-
sors, 13(2):1902–1918.
Howell, J. R., Siegel, R., and Mengüç, M. P. (2011). Ther-
mal radiation heat transfer. CRC Press, Boca Raton,
FL, USA, 5th edition.
Iuchi, T. and Furukawa, T. (2004). Some considerations
for a method that simultaneously measures the tem-
perature and emissivity of a metal in a high tem-
perature furnace. Review of Scientific Instruments,
75(12):5326–5332.
Iwasaki, Y., Kawata, S., and Nakamiya, T. (2013). Ve-
hicle detection even in poor visibility conditions us-
ing infrared thermal images and its application to road
traffic flow monitoring. In Sobh, T. and Elleithy, K.,
editors, Emerging Trends in Computing, Informatics,
Systems Sciences, and Engineering, number 151 in
Lecture Notes in Electrical Engineering, pages 997–
1009. Springer New York, New York, NY, USA.
Li, Y. and Brown, M. S. (2013). Exploiting reflection
change for automatic reflection removal. In IEEE
International Conference on Computer Vision, pages
2432–2439, Sydney, Australia.
Litwa, M. (2010). Influence of angle of view on tempera-
ture measurements using thermovision camera. IEEE
Sensors Journal, 10(10):1552–1554.
Martiny, M., Schiele, R., Gritsch, M., Schulz, A., and Wit-
tig, S. (1996). In situ calibration for quantitative
infrared thermography. In International Conference
on Quantitative InfraRed Thermography, pages 3–8,
Stuttgart, Germany.
Muniz, P. R., Cani, S. P. N., and Magalhães, R. d. S. (2014).
Influence of field of view of thermal imagers and an-
gle of view on temperature measurements by infrared
thermovision. IEEE Sensors Journal, 14(3):729–733.
Pandey, G., McBride, J., Savarese, S., and Eustice, R.
(2010). Extrinsic calibration of a 3D laser scanner and
an omnidirectional camera. IFAC Proceedings Vol-
umes, 43(16):336 – 341.
Planas-Cuchi, E., Chatris, J. M., López, C., and Arnaldos, J.
(2003). Determination of flame emissivity in hydro-
carbon pool fires using infrared thermography. Fire
Technology, 39(3):261–273.
Schechner, Y. Y., Kiryati, N., and Basri, R. (2000). Sepa-
ration of transparent layers using focus. International
Journal of Computer Vision, 39(1):25–39.
Szeliski, R., Avidan, S., and Anandan, P. (2000). Layer
extraction from multiple images containing reflections
and transparency. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 246–
253, Hilton Head Island, SC, USA.
Vidas, S., Moghadam, P., and Bosse, M. (2013). 3D ther-
mal mapping of building interiors using an RGB-D
and thermal camera. In IEEE International Confer-
ence on Robotics and Automation, pages 2311–2318,
Karlsruhe, Germany.
Vollmer, M., Henke, S., Karstädt, D., Möllmann, K. P.,
and Pinno, F. (2004). Identification and suppression
of thermal reflections in infrared thermal imaging. In
InfraMation Proceedings, volume 5, pages 287–298,
Las Vegas, NV, USA.
Zeise, B., Kleinschmidt, S. P., and Wagner, B. (2015). Im-
proving the interpretation of thermal images with the
aid of emissivity’s angular dependency. In IEEE Inter-
national Symposium on Safety, Security, and Rescue
Robotics, pages 1–8, West Lafayette, IN, USA.
Zhang, Q. and Pless, R. (2004). Extrinsic calibration of a
camera and laser range finder (improves camera cali-
bration). In IEEE/RSJ International Conference on In-
telligent Robots and Systems, volume 3, pages 2301–
2306, Sendai, Japan.
Zhang, Z. (2000). A flexible new technique for camera cal-
ibration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11):1330–1334.
Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping
165