Figure 6: Clutter attenuation in small target detection.
7 CONCLUSIONS
The error performance of radar system was
modelled using clutter attenuation and atmospheric
refraction. The results from the simulations revealed
that clutter and atmospheric refraction influenced by
water vapour and temperature affected the
performance of radar systems in detecting targets of
various sizes. The radar signal error performance
analysis was evaluated using residual error, thermal
noise error and signal-to-clutter + noise ratio.
Clutter mitigation ensured that small targets can
be detected at long ranges. The models presented in
the paper can be applied to the control and
navigation of autonomous systems using radar
signals. The navigation systems of mobile robots,
autonomous and semi-autonomous systems using
radar for obstacle detection and avoidance can be
optimised through minimisation of clutter and
atmospheric refraction.
REFERENCES
Agarwal, P., Jaysaval, V. K. & Rajagopal, S., 2014. A
generalized Model for Performance Analysis of
Airborne Radar in Clutter Scenario. Noida.
Chen, J.-S. & Furumoto, J., 2011. A Novel Approach to
Mitigation of Radar Beam Weighing Effect on
Coherent Radar Imaging Using VHF Atmospheric
Radar. IEEE Transactions on Geoscience and Remote
Sensing, 49(8), pp. 3059-3070.
Chen, J. et al., 2014. Surface Movement Radar Target
Detection. HangZhou, China, s.n.
Dilum Bandara, H. M. N., Jayasuman, A. P. & Zink, M.,
2012. Radar Networking in Collaborative Adaptive
Sensing of Atmosphere: State of the Art and Research
Challenges. Anaheim, CA.
Eustice, D., Baylis, C., Cohen, L. & Marks, R. L., 2015.
Effects of Power Amplifier Nonlinearities on the
Radar Ambiguity Function. Arlington, VA.
Fellows, M., C, B., Cohen, L. & J, M. R., 2013.
Calculation of the Radar Ambiguity Function from
Time-Domain Measurement Data for Real-Time,
Amplifier-in-the-Loop Waveform Optimization.
Columbus, OH.
Frankford, M. T., Stewart, K. B., Majurec, N. & Johnson,
J. T., 2014. Numerical and Experimental Studies of
Target Detection with MIMO Radar. IEEE
Transactions on Aerospace and Electronic Systems,
50(2), pp. 1569-1577.
Hayvaci, H. T., De Maio, A. & Erricolo, 2013. Improved
Detection Probability of a Radar Target in the
Presence of Multipath with Prior Knowledge of the
Environment. IET Radar, Sonar & Navigation, 7(1),
pp. 36-46.
Jang, Y., Lim, H., Oh, B. & Yoon, D., 2013. Clutter
Mapping and Performance Analysis for Vehicular
Radar Systems. Belgrade.
Mahafza, B. R. & Elsherbeni, A. Z., 2004. Simulations for
Radar Systems Design. Boca Raton: Chapman &
Hall/ CRC Press LLC.
Marquis, E., 2010. Antenna Size Versus Sea Clutter
Rejection: A new Analysis of Coastal Radar
performances and Optimization. Paris.
Meikle, H., 2008. Modern Radar Systems. 2nd ed.
Boston: Artech House Inc..
Panchenko, A. Y., Slipchenko, N. I. & Liu, C., 2012.
Comparison of Radar and Acoustic Methods for
Atmopshere Sounding. Sevastopol, Crimea, s.n.
Radmard, M., Chitgarha, M. M., Nazari Majd, M. &
Nayebi, M. M., 2014. Ambiguity Function of MIMO
radar with Widely Separated Antennas. Gdansk.
Renkwitz, T., Stober, G., Chau, J. L. & Latteck, R., 2014.
Estimation and Validation of the Radiation Pattern of
the Middle Atmosphere Alomar Radar System
(MAARSY). Beijing.
Sharma, G. V. K., Srihari, P. & Rajeswari, K. R., 2014.
MIMO Radar Ambiguity Analysis of Frequency
Hopping Pulse Waveforms. Cincinnati, OH, .
Su, X., Wu, Z. & Zhang, Y., 2010. Detection
Performance of C-Band Radar in Sea Clutter.
Guangzhou.