An Image Generator Platform to Improve Cell Tracking Algorithms - Simulation of Objects of Various Morphologies, Kinetics and Clustering
Pedro Canelas, Leonardo Martins, André Mora, Andre S. Ribeiro, José Fonseca
2016
Abstract
Several major advances in Cell and Molecular Biology have been made possible by recent advances in live-cell microscopy imaging. To support these efforts, automated image analysis methods such as cell segmentation and tracking during a time-series analysis are needed. To this aim, one important step is the validation of such image processing methods. Ideally, the “ground truth” should be known, which is possible only by manually labelling images or in artificially produced images. To simulate artificial images, we have developed a platform for simulating biologically inspired objects, which generates bodies with various morphologies and kinetics and, that can aggregate to form clusters. Using this platform, we tested and compared four tracking algorithms: Simple Nearest-Neighbour (NN), NN with Morphology and two DBSCAN-based methods. We show that Simple NN works well for small object velocities, while the others perform better on higher velocities and when clustering occurs. Our new platform for generating new benchmark images to test image analysis algorithms is openly available at (http://griduni.uninova.pt/Clustergen/ClusterGen_v1.0.zip).
References
- Bhattacharyya, A., 1943. On a Measure of Divergence Between Two Statistical Populations Defined by Probability Distributions. Bulletin of the Calcutta Mathematical Society, 35, pp.99-110.
- Bonnet, N., 2004. Some trends in microscope image processing. Micron (Oxford, England?: 1993), 35(8), pp.635-653.
- Coelho, L.P., Shariff, A. & Murphy, R.F., 2009. Nuclear Segmentation In Microscope Cell Images A HandSegmented Dataset And Comparison Of Algorithms. In Proc IEEE Int Symp Biomed Imaging. pp. 518-521.
- Coutu, D.L. & Schroeder, T., 2013. Probing cellular processes by long-term live imaging--historic problems and current solutions. Journal of cell science, 126(Pt 17), pp.3805-15.
- Czink, N., Mecklenbräuker, C. & Del Galdo, G., 2006. A novel automatic cluster tracking algorithm. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, pp.1-5.
- Danuser, G., 2011. Computer vision in cell biology. Cell, 147(5), pp.973-8.
- Deshmukh, M. & Bhosle, U., 2011. A survey of image registration. International Journal of Image Processing, 5(3), pp.245-269.
- Elfring, J., Janssen, R. & van de Molengraft, R., 2010. Data Association and Tracking: A Literature Survey. In ICT Call 4 RoboEarth Project.
- Ester, M. et al., 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In 2nd Int. Conference on Knowledge Discovery and Data Mining. pp. 226-231.
- Frigault, M. et al., 2009. Live-cell microscopy - tips and tools. Journal of Cell Science, 122(6), pp.753-767.
- Gorji, A. & Menhaj, M.B., 2007. Multiple Target Tracking for Mobile Robots Using the JPDAF Algorithm. In 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007). pp. 137-145.
- Gotelli, N.J. & McGill, B.J., 1996. Null versus neutral models: what's the difference? Ecography, 29(5), pp.793-800.
- Gu, S., Zheng, Y. & Tomasi, C., 2011. Efficient visual object tracking with online nearest neighbor classifier. In Computer Vision - ACCV 2010. Volume 6492 of the series LNCS. pp. 271-282.
- Häkkinen, A. et al., 2013. CellAging: a tool to study segregation and partitioning in division in cell lineages of Escherichia coli. Bioinformatics (Oxford, England), 29(13), pp.1708-1709.
- Joyce, J., 2014. Kullback-Leibler Divergence. In M. Lovric, ed. International Encyclopedia of Statistical Science SE - 327. Springer Berlin Heidelberg, pp. 720-722.
- Kruse, K., 2012. Bacterial Organization in Space and Time. In Comprehensive Biophysics. pp. 208-221.
- Lehmussola, A. et al., 2007. Computational framework for simulating fluorescence microscope images with cell populations. IEEE transactions on medical imaging, 26(7), pp.1010-6.
- Lehmussola, A. et al., 2011. Synthetic Images of HighThroughput Microscopy for Validation of Image Analysis Methods. Proceedings of the IEEE, 96(8), pp.1348 - 1360.
- Martins, L., Fonseca, J. & Ribeiro, A., 2015. “miSimBa” - A simulator of synthetic time-lapsed microscopy images of bacterial cells. In Proceedings - 2015 IEEE 4th Portuguese Meeting on Bioengineering, ENBENG 2015. pp. 1 - 6.
- Meijering, E., 2012. Cell Segmentation: 50 Years Down the Road. IEEE Signal Processing Magazine, 29(5), pp.140-145.
- Misteli, T., 2007. Beyond the sequence: cellular organization of genome function. Cell, 128(4), pp.787-800.
- Murphy, R., 2012. CellOrganizer: Image-derived Models of Subcellular Organization and Protein Distribution. Methods in Cell Biology, 110, pp.179-93.
- Ruusuvuori, P. et al., 2008. Benchmark Set Of Synthetic Images For Validating Cell Image Analysis Algorithms. In Proceedings of the 16th European Signal Processing Conference, EUSIPCO.
- Satwik, R. et al., 2012. SimuCell?: a flexible framework for creating synthetic microscopy images a PhenoRipper?: software for rapidly profiling microscopy images. , 9(7), pp.634-636.
- Selinummi, J. et al., 2005. Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), pp.859-863.
- Shi, J. & Tomasi, C., 1994. Good features to track. In Proceedings CVPR'94. 1994 IEEE Computer Society Conference on. IEEE. pp. 593-600.
- Sliusarenko, O. & Heinritz, J., 2011. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Molecular Microbiology, 80(3), pp.612-627.
- Smith, A., 1993. Novel approach to nonlinear/nonGaussian Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140(2), pp.107-113.
- Sung, M.-H. & McNally, J.G., 2011. Live cell imaging and systems biology. Wiley interdisciplinary reviews. Systems biology and medicine, 3(2), pp.167-82.
- Svoboda, D. et al., 2007. On simulating 3D Fluorescent Microscope Images. In Computer Analysis of Images and Patterns -12th International Conference, CAIP 2007, Vienna, Austria, August 27-29, 2007. Proceedings. pp. 309-316.
- Svoboda, D., Kozubek, M. & Stejskal, S., 2009. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry. Part A?: the journal of the International Society for Analytical Cytology, 75(6), pp.494-509.
- Tissainayagam, P. & Suter, D., 2005. Object tracking in image sequences using point features. Pattern Recognition, 38(1), pp.105-113.
- Tran, T.N., Drab, K. & Daszykowski, M., 2013. Revised DBSCAN algorithm to cluster data with dense adjacent clusters. Chemometrics and Intelligent Laboratory Systems, 120, pp.92-96.
- Ulman, V., Oremus, Z. & Svoboda, D., 2015. TRAgen: A Tool for Generation of Synthetic Time-Lapse Image Sequences of Living Cells. In Proceedings of 18th International Conference on Image Analysis and Processing (ICIAP 2015). Springer International Publishing, pp. 623-634.
- Wang, Q. et al., 2010. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytometry A, 77(1), pp.101-110.
- Wyawahare, M., Patil, P. & Abhyankar, H., 2009. Image Registration Techniques?: An overview. Int. Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3), pp.11-28.
- Xiong, W. et al., 2010. Learning Cell Geometry Models For Cell Image Simulation?: An Unbiased Approach. In Proceedings of 2010 IEEE 17th International Conference on Image Processing. pp. 1897-1900.
- Yilmaz, A., Javed, O. & Shah, M., 2006. Object tracking: A survey. ACM Computing Surveys, 38(4, Article 13), pp.1-45.
- Young, J. et al., 2012. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nat. Protoc., 7(1), pp.80-8.
- Zhao, T. & Murphy, R.F., 2007. Automated learning of generative models for subcellular location: building blocks for systems biology. Cytometry. Part A?: the journal of the International Society for Analytical Cytology, 71(12), pp.978-90.
- Zhou, H., Yuan, Y. & Shi, C., 2009. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 113(3), pp.345-352.
Paper Citation
in Harvard Style
Canelas P., Martins L., Mora A., S. Ribeiro A. and Fonseca J. (2016). An Image Generator Platform to Improve Cell Tracking Algorithms - Simulation of Objects of Various Morphologies, Kinetics and Clustering . In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-199-1, pages 44-55. DOI: 10.5220/0005957800440055
in Bibtex Style
@conference{simultech16,
author={Pedro Canelas and Leonardo Martins and André Mora and Andre S. Ribeiro and José Fonseca},
title={An Image Generator Platform to Improve Cell Tracking Algorithms - Simulation of Objects of Various Morphologies, Kinetics and Clustering},
booktitle={Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2016},
pages={44-55},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005957800440055},
isbn={978-989-758-199-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - An Image Generator Platform to Improve Cell Tracking Algorithms - Simulation of Objects of Various Morphologies, Kinetics and Clustering
SN - 978-989-758-199-1
AU - Canelas P.
AU - Martins L.
AU - Mora A.
AU - S. Ribeiro A.
AU - Fonseca J.
PY - 2016
SP - 44
EP - 55
DO - 10.5220/0005957800440055