MYNTS: Multi-phYsics NeTwork Simulator

Tanja Clees, Kläre Cassirer, Nils Hornung, Bernhard Klaassen, Igor Nikitin, Lialia Nikitina, Robin Suter, Inna Torgovitskaia

2016

Abstract

We present a generic approach for the simulation of transport networks, where the steps of physical modeling and numerical simulation are effectively separated. The model is described by a list of physical equations and inequalities as problem constraints for non-linear programming (NLP). This list is translated to the language of expression trees and is made accessible for the numerical solution by standard NLP solvers. Various problem types can be solved in this way, including stationary and transient network simulation, feasibility analysis and energy-saving optimization. The simulation is provided for different disciplines, such as gas transport, water supply and electric power networks. We demonstrate the implementation of this approach in our multiphysics network simulator.

References

  1. Avriel, M. (2003). Nonlinear Programming: Analysis and Methods. Dover Publishing.
  2. Aymanns, P. et al. (2008). Online simulation of gas distribution networks. 9th SIMONE Congress, October 15-17, 2008, Dubrownik, Croatia .
  3. Baumanns, S. et al. (2012). MYNTS User's Manual, Release 1.3. Fraunhofer SCAI.
  4. Bazaraa, M. S. and Shetty, C. M. (1979). Nonlinear programming: theory and algorithms. John Wiley & Sons.
  5. Belotti, P. et al. (2013). Mixed-integer nonlinear optimization. Acta Numerica, 22:1-131.
  6. Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific.
  7. Brkic, D. (2011). Review of explicit approximations to the Colebrook relation for flow friction. Journal of Petroleum Science and Engineering, 77(1):34-48.
  8. CES (2010). DIN EN ISO 12213-2: Natural gas - Calculation of compression factor. European Committee for Standardization.
  9. Clees, T. (2012). MYNTS - Ein neuer multi physikalischer Simulator für Gas, Wasser und elektrische Netze. Energie-Wasser Praxis, (09):174-175.
  10. Clees, T. (2016). Parameter studies for energy networks with examples from gas transport. Springer Proceedings in Mathematics & Statistics, 153:29-54.
  11. Clees, T. et al. (2015). RBF-metamodel driven multiobjective optimization and its application in focused ultrasonic therapy planning. In Rückemann, C.-P., editor, ADVCOMP 2015, The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences, July 19-24, 2015, Nice, France , pages 71-76. International Academy, Research, and Industry Association.
  12. Clees, T. et al. (2016a). Cooling circuit simulation I: Modeling. Technical Report, Fraunhofer SCAI.
  13. Clees, T. et al. (2016b). Cooling circuit simulation II: A numerical example. Technical Report, Fraunhofer SCAI.
  14. Clees, T. et al. (2016c). A globally convergent method for generalized resistive systems and its application to stationary problems in gas transport networks. In Proc. SIMULTECH 2016, July 29-31, 2016, Lisbon, Portugal (accepted).
  15. Colburn, A. P. (1933). Mean temperature difference and heat transfer coefficient in liquid heat exchangers. Industrial & Engineering Chemistry, 25(8):873-877.
  16. Colebrook, C. F. (1939). Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. Journal of the Institution of Civil Engineers, 11(4):133-156.
  17. Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons.
  18. Fourer, R. et al. (2002). AMPL: A Modeling Language for Mathematical Programming. Cengage Learning, 2nd edition.
  19. Gay, D. M. (2005). Writing .nl Files. Technical Report, Sandia National Laboratories, Albuquerque.
  20. Gill, P. E. et al. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1):99-131.
  21. Harrison, M. A. (1978). Introduction to Formal Language Theory. Addison-Wesley.
  22. Herman, S. L. (2011). Delmar's Standard Textbook of Electricity. Delmar.
  23. KSB AG (2005). Auslegung von Kreiselpumpen. KSB Aktiengesellschaft, 5th edition.
  24. Milano, F. (2010). Power System Modelling and Scripting. Springer, Berlin, Heidelberg.
  25. Milano, F. (2015). PSAT Software. faraday1.ucd.ie/psat .html.
  26. Mischner, J. et al. (2011). Systemplanerische Grundlagen der Gasversorgung. Oldenbourg Industrieverlag GmbH.
  27. Modelica (2012). A Unified Object-Oriented Language for Systems Modeling. Modelica Association.
  28. Murtagh, B. and Saunders, M. (1978). Large-scale linearly constrained optimization. Mathematical Programming, 14:41-72.
  29. Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer.
  30. Rogalla, B.-U. and Wolters, A. (1994). Slow transients in closed conduit flow - part I: Numerical methods. In Chaudhry, M. H. and Mays, L. W., editors, Computer Modeling of Free-Surface and Pressurized Flows, volume 274 of NATO ASI Series, pages 613- 642. Springer, Netherlands.
  31. Scheibe, D. and Weimann, A. (1999). Dynamische Gasnetzsimulation mit GANESI. GWF Gas/Erdgas, (9):610-616.
  32. Schmidt, M. et al. (2015a). High detail stationary optimization models for gas networks: model components. Optimization and Engineering, 16(1):131-164.
  33. Schmidt, M. et al. (2015b). High detail stationary optimization models for gas networks: validation and results. Optimization and Engineering online, DOI: 10.1007/s11081-015-9300-3.
  34. Stevanovic, V. D. et al. (2009). Prediction of thermal transients in district heating systems. Energy Conversion and Management, 50(9):2167-2173.
  35. VDI/VDE (1962). Strömungstechnische Kenngrößen von Stellventilen und deren Bestimmung. Technical Report 2173, Verein deutscher Ingenieure, Verband deutscher Elektrotechniker, Berlin, Germany.
  36. Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25-57.
  37. Zimmerman, R. D. and Murillo-Sanchez, C. E. (2015). Matpower 5.1 User's Manual. www.pserc.cornell. edu/matpower.
Download


Paper Citation


in Harvard Style

Clees T., Cassirer K., Hornung N., Klaassen B., Nikitin I., Nikitina L., Suter R. and Torgovitskaia I. (2016). MYNTS: Multi-phYsics NeTwork Simulator . In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-199-1, pages 179-186. DOI: 10.5220/0005961001790186


in Bibtex Style

@conference{simultech16,
author={Tanja Clees and Kläre Cassirer and Nils Hornung and Bernhard Klaassen and Igor Nikitin and Lialia Nikitina and Robin Suter and Inna Torgovitskaia},
title={MYNTS: Multi-phYsics NeTwork Simulator},
booktitle={Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2016},
pages={179-186},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005961001790186},
isbn={978-989-758-199-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - MYNTS: Multi-phYsics NeTwork Simulator
SN - 978-989-758-199-1
AU - Clees T.
AU - Cassirer K.
AU - Hornung N.
AU - Klaassen B.
AU - Nikitin I.
AU - Nikitina L.
AU - Suter R.
AU - Torgovitskaia I.
PY - 2016
SP - 179
EP - 186
DO - 10.5220/0005961001790186