cedures and intelligent instruments in automation”
financially supported by the Internal science fund
of BUT. The Department of Control and Instru-
mentation (BUT - FEEC). The project CEITEC
(CZ.1.05/1.1.00/02.0068), financed from the Euro-
pean Regional Development Fund and by the TACR
under the project TE01020197 - CAK3.
REFERENCES
Douglas, D. H. and Peucker, T. K. (1973). Algorithms for
the Reduction of the Number of Points Required to
Represent a Digitized Line or its Caricature. Carto-
graphica: The International Journal for Geographic
Information and Geovisualization, 10(2):112–122.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Heinz, I., Hartl, F., and Frohlich, C. (2001). Semi-
automatic 3D CAD model generation of as-built con-
ditions of real environments using a visual laser radar.
In Proceedings 10th IEEE International Workshop
on Robot and Human Interactive Communication.
ROMAN 2001 (Cat. No.01TH8591), pages 400–406.
IEEE.
Hough, P. V. C. (1962). Method and Means for Recognizing
Complex Patterns.
Jelinek, A., Zalud, L., and Jilek, T. (2016). Fast total least
squares vectorization. Journal of Real-Time Image
Processing.
Kandal, P. and Karschti, S. (2014). Method for simplified
storage of data representing forms.
Kocmanova, P., Zalud, L., and Chromy, A. (2013). 3D prox-
imity laser scanner calibration. In 2013 18th Interna-
tional Conference on Methods & Models in Automa-
tion & Robotics (MMAR), pages 742–747. IEEE.
Lagarias, J. C., Reeds, J. a., Wright, M. H., and Wright, P. E.
(1998). Convergence Properties of the Nelder–Mead
Simplex Method in Low Dimensions. SIAM Journal
on Optimization, 9(1):112–147.
Le Floc’h, F. (2012). Issues of Nelder-Mead Simplex Opti-
misation with Constraints. SSRN Electronic Journal,
pages 1–7.
Liu, Z., Zhang, B., Li, P., Guo, H., and Han, J. (2011).
Automatic registration between remote sensing image
and vector data based on line features. In 2011 19th
International Conference on Geoinformatics, number
2008, pages 1–5. IEEE.
Mathibela, B., Posner, I., and Newman, P. (2013). A road-
work scene signature based on the opponent colour
model. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4394–4400.
IEEE.
Mirmehdi, M., Palmer, P. L., and Kittler, J. (1997). Robust
line segment extraction using genetic algorithms. In
Image Processing and Its Applications, 1997., Sixth
International Conference on, volume 1, pages 141 –
145 vol.1. IEEE.
Nelder, J. A. and Mead, R. (1965). A Simplex Method
for Function Minimization. The Computer Journal,
7(4):308–313.
Nguyen, V., G
¨
achter, S., Martinelli, A., Tomatis, N., and
Siegwart, R. (2007). A comparison of line extrac-
tion algorithms using 2D range data for indoor mobile
robotics. Autonomous Robots, 23(2):97–111.
Norouzi, M., Yaghobi, M., Siboni, M., and Jadaliha, M.
(2009). Recursive line extraction algorithm from 2d
laser scanner applied to navigation a mobile robot. In
2008 IEEE International Conference on Robotics and
Biomimetics, pages 2127–2132. IEEE.
Reumann, K. and Witkam, A. P. M. (1974). Optimiz-
ing Curve Segmentation in Computer Graphics. In
Proceedings of International Computing Symposium,
pages 467–472, Amsterdam. North-Holland Publish-
ing Company.
Shi, W. and Cheung, C. (2006). Performance Evaluation
of Line Simplification Algorithms for Vector General-
ization. The Cartographic Journal, 43(1):27–44.
Werner, M., Schauer, L., and Scharf, A. (2014). Reliable
trajectory classification using Wi-Fi signal strength in
indoor scenarios. In 2014 IEEE/ION Position, Loca-
tion and Navigation Symposium - PLANS 2014, pages
663–670. IEEE.
Xiangyun Hu, Yijing Li, Jie Shan, Jianqing Zhang, and
Yongjun Zhang (2014). Road Centerline Extraction in
Complex Urban Scenes From LiDAR Data Based on
Multiple Features. IEEE Transactions on Geoscience
and Remote Sensing, 52(11):7448–7456.
Xu, C., Frechet, S., Laurendeau, D., and Miralles, F. (2015).
Out-of-Core Surface Reconstruction from Large Point
Sets for Infrastructure Inspection. In 2015 12th Con-
ference on Computer and Robot Vision, pages 313–
319. IEEE.
Zalud, L., Kocmanova, P., Burian, F., Jilek, T., Kalvoda, P.,
and Kopecny, L. (2015). Calibration and Evaluation
of Parameters in A 3D Proximity Rotating Scanner.
Elektronika ir Elektrotechnika, 21(1):3–12.
Zalud, L., Kopecny, L., and Burian, F. (2008). Orpheus
Reconnissance Robots. In 2008 IEEE International
Workshop on Safety, Security and Rescue Robotics,
number October, pages 31–34. IEEE.
Augmented Postprocessing of the FTLS Vectorization Algorithm - Approaching to the Globally Optimal Vectorization of the Sorted Point
Clouds
223