and Privacy, SP ’11, pages 96–111. IEEE Computer
Society.
Bishop, C. M. (2006). Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Breiman, L. (2001). Random forests. Mach. Learn.,
45(1):5–32.
Enck, W., Ongtang, M., and McDaniel, P. (2009). On
lightweight mobile phone application certification. In
16th ACM conference on Computer and communica-
tions security (CCS), pages 235–245. ACM.
Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wag-
ner, D. (2011a). A Survey Of Mobile Malware in the
Wild. In 1st ACM workshop on Security and privacy
in smartphones and mobile devices (SPSM), pages 3–
14. ACM.
Felt, A. P., Greenwood, K., and Wagner, D. (2011b).
The effectiveness of application permissions. In 2nd
USENIX conference on Web application development
(WebApps), pages 7–7. USENIX Association.
Gartner, Inc. (2015). Gartner says emerging markets
drove worldwide smartphone sales to 15.5 per-
cent growth in third quarter of 2015. Online:
http://www.gartner.com/newsroom/id/3169417.
Google Developers (2015). Brillo. Online:
https://developers.google.com/brillo.
Google Inc. (2015a). Android Developers – Investigat-
ing Your RAM Usage. Online: http://developer.an
droid.com/tools/debugging/debugging-memory.html.
Google Inc. (2015b). Google Play. Online:
https://play.google.com.
Google Inc. (2015c). Google Report – Android Security
2014 Year in Review. Technical report. Online:
https://static.googleusercontent.com/media/source.an
droid.com/it//devices/tech/security/reports/Google
Android Security 2014 Report Final.pdf.
Group, C. (2015). 2015 cyberthreat defense re-
port. Technical report. Online: http://www.bright
cloud.com/pdf/cyberedge-2015-cdr-report.pdf.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA Data Min-
ing Software: An Update. SIGKDD Explor. Newsl.,
11(1):10–18.
Hall, M. A. (1998). Correlation-based Feature Subset Se-
lection for Machine Learning. PhD thesis, University
of Waikato, Hamilton, New Zealand.
Ham, H.-S. and Choi, M.-J. (2013). Analysis of android
malware detection performance using machine learn-
ing classifiers. In ICT Convergence (ICTC), 2013 In-
ternational Conference on, pages 490–495.
Holte, R. (1993). Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning, 11(1):63–90.
John, G. and Langley, P. (1995). Estimating continuous dis-
tributions in bayesian classifiers. In In Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345. Morgan Kaufmann.
Kim, H., Smith, J., and Shin, K. G. (2008). Detecting
energy-greedy anomalies and mobile malware vari-
ants. In Proceedings of the 6th International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys ’08, pages 239–252, New York, NY, USA.
ACM.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection.
pages 1137–1143. Morgan Kaufmann.
Le Cessie, S. and Van Houwelingen, J. C. (1992). Ridge
estimators in logistic regression. Applied statistics,
pages 191–201.
Liu, H. and Yu, L. (2005). Toward integrating feature selec-
tion algorithms for classification and clustering. IEEE
Transactions on Knowledge and Data Engineering,
17(4):491–502.
Liu, L., Yan, G., Zhang, X., and Chen, S. (2009). VirusMe-
ter: Preventing Your Cellphone from Spies. In 12th
International Symposium on Recent Advances in In-
trusion Detection (RAID), pages 244–264. Springer.
McAfee Labs (February 2015). Threats
Report. Technical report. Online:
http://www.mcafee.com/hk/resources/reports/rp-
quarterly-threat-q4-2014.pdf.
Milosevic, J., Dittrich, A., Ferrante, A., and Malek, M.
(2014). A resource-optimized approach to efficient
early detection of mobile malware. In Availability,
Reliability and Security (ARES), 2014 Ninth Interna-
tional Conference on, pages 333–340. IEEE.
Milosevic, J., Ferrante, A., and Malek, M. (2016). What
does the memory say? towards the most indicative
features for efficient malware detection. In CCNC
2016, The 13th Annual IEEE Consumer Communica-
tions & Networking Conference, Las Vegas, NV, USA.
IEEE Communication Society, IEEE Communication
Society.
Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Computer Se-
curity Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 421–430.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.
Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss,
Y. (2012). ”andromaly”: A behavioral malware detec-
tion framework for android devices. J. Intell. Inf. Syst.,
38(1):161–190.
Symantec Corporation (2015). Internet security threat
report volume 20. Technical report. Online:
https://www.symantec.com/content/en/us/enterprise/
other resources/21347933 GA RPT-internet-
security-threat-report-volume-20-2015.pdf.
Truong, H. T. T., Lagerspetz, E., Nurmi, P., Oliner, A. J.,
Tarkoma, S., Asokan, N., and Bhattacharya, S. (2013).
The Company You Keep: Mobile Malware Infec-
tion Rates and Inexpensive Risk Indicators. CoRR,
abs/1312.3245.
Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu,
K.-P. (2012). Droidmat: Android malware detection
through manifest and api calls tracing. In Information
Security (Asia JCIS), 2012 Seventh Asia Joint Confer-
ence on, pages 62–69.
A Friend or a Foe? Detecting Malware using Memory and CPU Features
83