on chaotic iterations has been proposed, which has
achieved to improve the statistical profile of flawed
generators. We plan to investigate which combina-
tions and parameters of chaotic iterations can be cho-
sen to reach an ideal PRNG (fast, small, and secure).
ACKNOWLEDGEMENTS
This work is partially funded by the Labex ACTION
program (contract ANR-11-LABX-01-01).
REFERENCES
Bahi, J., Couturier, R., Guyeux, C., and H
´
eam, P.-C. (2015).
Efficient and cryptographically secure generation of
chaotic pseudorandom numbers on gpu. The journal
of Supercomputing, 71(10):3877–3903.
Bahi, J., Guyeux, C., and Wang, Q. (2009). A novel pseudo-
random generator based on discrete chaotic iterations.
In INTERNET’09, 1-st Int. Conf. on Evolving Internet,
pages 71–76, Cannes, France.
Bahi, J. M., Fang, X., Guyeux, C., and Larger, L. (2013).
Fpga design for pseudorandom number generator
based on chaotic iteration used in information hiding
application. Appl. Math, 7(6):2175–2188.
Barker, E. and Roginsky, A. (2010). Draft NIST special
publication 800-131 recommendation for the transi-
tioning of cryptographic algorithms and key sizes.
Blackburn, S., Carter, G., Gollmann, D., Murphy, S., Pa-
terson, K., Piper, F., and Wild, P. (1994). Aspects of
linear complexity. In Communications and Cryptog-
raphy, pages 35–42. Springer.
Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers,
K., and Zhang, Z. (2011). High-level synthesis for
fpgas: From prototyping to deployment. Computer-
Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 30(4):473–491.
Couture, R. and L’Ecuyer, P. (1997). Distribution proper-
ties of multiply-with-c arry random number genera-
tors. Mathematics of Computation of the American
Mathematical Society, 66(218):591–607.
Devaney, R. L. (2003). An Introduction to Chaotic Dynam-
ical Systems, 2nd Edition. Westview Pr.
Fang, X., Wang, Q., Guyeux, C., and Bahi, J. M. (2014).
Fpga acceleration of a pseudorandom number genera-
tor based on chaotic iterations. Journal of Information
Security and Applications, 19(1):78–87.
Gentle, J. E. (2013). Random number generation and Monte
Carlo methods. Springer Science & Business Media.
Gleick, J. (1997). Chaos: Making a new science. Random
House.
Homsirikamol, E. and Gaj, K. (2015). Hardware bench-
marking of cryptographic algorithms using high-level
synthesis tools: The sha-3 contest case study. In
Applied Reconfigurable Computing, pages 217–228.
Springer.
Knuth, D. E. (1997). The Art of Computer Program-
ming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.
L’Ecuyer, P. (1996). Maximally equidistributed combined
tausworthe generators. Mathematics of Computation
of the American Mathematical Society, 65(213):203–
213.
L’Ecuyer, P. (1999a). Good parameters and implementa-
tions for combined multiple recursive random number
generators. Operations Research, 47(1):159–164.
L’Ecuyer, P. (1999b). Tables of maximally equidis-
tributed combined lfsr generators. Mathematics of
Computation of the American Mathematical Society,
68(225):261–269.
L’Ecuyer, P. and Simard, R. (2007). Testu01: Ac li-
brary for empirical testing of random number gener-
ators. ACM Transactions on Mathematical Software
(TOMS), 33(4):22.
Luby, M. G. (1996). Pseudorandomness and cryptographic
applications. Princeton University Press.
Marsaglia, G. et al. (2003). Xorshift rngs. Journal of Sta-
tistical Software, 8(14):1–6.
Matsumoto, M. and Kurita, Y. (1994). Twisted gfsr genera-
tors ii. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 4(3):254–266.
Matsumoto, M. and Nishimura, T. (1998). Mersenne
twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation (TOMACS),
8(1):3–30.
Meyer-Baese, U. and Meyer-Baese, U. (2007). Digital sig-
nal processing with field programmable gate arrays,
volume 65. Springer.
O’Neill, M. E. (1988). PCG: A family of simple fast
space-efficient statistically good algorithms for ran-
dom number generation.
Panneton, F., L’Ecuyer, P., and Matsumoto, M. (2006). Im-
proved long-period generators based on linear recur-
rences modulo 2. ACM Transactions on Mathematical
Software (TOMS), 32(1):1–16.
Rajagopalan, V., Boppana, V., Dutta, S., Taylor, B., and
Wittig, R. (2011). Xilinx zynq-7000 epp–an exten-
sible processing platform family. In 23rd Hot Chips
Symposium, pages 1352–1357.
Rueppel, R. A. (1985). Linear complexity and random se-
quences. In Advances in CryptologyEUROCRYPT85,
pages 167–188. Springer.
Thomas, D. B. and Luk, W. (2013). The lut-sr family of
uniform random number generators for fpga architec-
tures. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 21(4):761–770.
Vigna, S. (2014a). An experimental exploration of
marsaglia’s xorshift generators, scrambled. arXiv
preprint arXiv:1402.6246.
Vigna, S. (2014b). Further scramblings of marsaglia’s xor-
shift generators. arXiv preprint arXiv:1404.0390.
Zepernick, H.-J. and Finger, A. (2013). Pseudo random
signal processing: theory and application. John Wiley
& Sons.
FPGA Implementation of F
2
-Linear Pseudorandom Number Generators based on Zynq MPSoC: A Chaotic Iterations Post Processing Case
Study
309