Gascon, H., Yamaguchi, F., Arp, D., and Rieck, K. (2013).
Structural detection of android malware using em-
bedded call graphs. In Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security,
AISec ’13, pages 45–54, New York, NY, USA. ACM.
Giannella, C. and Bloedorn, E. (2015). Spectral malware
behavior clustering. In Intelligence and Security In-
formatics (ISI), 2015 IEEE International Conference
on, pages 7–12. IEEE.
Goldberg, L. A., Goldberg, P. W., Phillips, C. A., and
Sorkin, G. B. (1998). Constructing computer virus
phylogenies. Journal of Algorithms, 26(1):188–208.
Hu, X., Chiueh, T.-c., and Shin, K. G. (2009). Large-scale
malware indexing using function-call graphs. In Pro-
ceedings of the 16th ACM conference on Computer
and communications security, pages 611–620. ACM.
Jang, J., Brumley, D., and Venkataraman, S. (2011). Bit-
shred: feature hashing malware for scalable triage and
semantic analysis. In Proceedings of the 18th ACM
conference on Computer and communications secu-
rity, pages 309–320. ACM.
Jilcott, S. (2015). Scalable malware forensics using phylo-
genetic analysis. In Technologies for Homeland Secu-
rity (HST), 2015 IEEE International Symposium on,
pages 1–6. IEEE.
Karim, M. E., Walenstein, A., Lakhotia, A., and Parida, L.
(2005). Malware phylogeny generation using permu-
tations of code. Journal in Computer Virology, 1(1-
2):13–23.
Kinable, J. and Kostakis, O. (2011). Malware classification
based on call graph clustering. Journal in computer
virology, 7(4):233–245.
Kong, D. and Yan, G. (2014). Transductive malware label
propagation: Find your lineage from your neighbors.
In INFOCOM, 2014 Proceedings IEEE, pages 1411–
1419. IEEE.
Kruegel, C., Kirda, E., Mutz, D., Robertson, W., and Vigna,
G. (2005). Polymorphic worm detection using struc-
tural information of executables. In Recent Advances
in Intrusion Detection, pages 207–226. Springer.
Ma, J., Dunagan, J., Wang, H. J., Savage, S., and Voelker,
G. M. (2006). Finding diversity in remote code injec-
tion exploits. In Proceedings of the 6th ACM SIG-
COMM conference on Internet measurement, pages
53–64. ACM.
Mercaldo, F., Visaggio, C. A., Canfora, G., and Cimitile, A.
(2016). Mobile malware detection in the real world.
In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, pages 744–746.
Nagra, J. and Collberg, C. (2009). Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Pearson Education.
Rieck, K., Trinius, P., Willems, C., and Holz, T. (2011). Au-
tomatic analysis of malware behavior using machine
learning. Journal of Computer Security, 19(4):639–
668.
Rosenblum, N., Miller, B. P., and Zhu, X. (2011). Re-
covering the toolchain provenance of binary code. In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pages 100–110. ACM.
Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Compari-
son and evaluation of code clone detection techniques
and tools: A qualitative approach. Science of Com-
puter Programming, 74(7):470–495.
Schipka, M. (2007). A road to big money: evolution of
automation methods in malware development. Martin
[17].
Shang, S., Zheng, N., Xu, J., Xu, M., and Zang, H.
(2010). Detecting malware variants via function-call
graph similarity. In 2010 5th International Conference
on Malicious and Unwanted Software (MALWARE),
pages 113–120.
Shen, T., Zhongyang, Y., Xin, Z., Mao, B., and Huang, H.
(2014). Detect android malware variants using com-
ponent based topology graph. In IEEE 13th Interna-
tional Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pages
406–413.
Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F. C.,
and Hoffmann, J. (2013). Mobilesandbox: Looking
deeper into android applications. In 28th International
ACM Symposium on Applied Computing (SAC).
Walenstein, A. and Lakhotia, A. (2012). A transformation-
based model of malware derivation. In Malicious and
Unwanted Software (MALWARE), 2012 7th Interna-
tional Conference on, pages 17–25. IEEE.
Wehner, S. (2007). Analyzing worms and network traffic
using compression. Journal of Computer Security,
15(3):303–320.
Wu, L., Xu, M., Xu, J. Zheng, N., and Zhang, H. (2013).
A novel malware variants detection method based on
function-call graph. In 13Th IEEE Joint International
Computer Science and Information Technology Con-
ference (JICSIT), pages 1–5.
Xiaofang, B., Li, C., Weihua, H., and Qu, W. (2014). Mal-
ware variant detection using similarity search over
content fringerprint. In 26th Chinese Control and De-
cision Conference, pages 5334–5339.
Yu, S., Zhou, S., Liu, L., Yang, R., and Luo, J. (2010). Mal-
ware variants identification based on byte frequency.
In Networks Security Wireless Communications and
Trusted Computing (NSWCTC), 2010 Second Interna-
tional Conference on, volume 2, pages 32–35. IEEE.
Zhong, Y., Yamaki, H., and Takakura, H. (2012). A
malware classification method based on similarity of
function structure. In Applications and the Internet
(SAINT), 2012 IEEE/IPSJ 12th International Sympo-
sium on, pages 256–261. IEEE.
Zhong, Y., Yamaki, H., Yamaguchi, Y., and Takakura, H.
(2013). Ariguma code analyzer: Efficient variant de-
tection by identifying common instruction sequences
in malware families. In Computer Software and Ap-
plications Conference (COMPSAC), 2013 IEEE 37th
Annual, pages 11–20. IEEE.
Zhou, Y. and Jiang, X. (2012). Dissecting android mal-
ware: Characterization and evolution. In Proceed-
ings of 33rd IEEE Symposium on Security and Privacy
(Oakland 2012).
How I Met Your Mother? - An Empirical Study about Android Malware Phylogenesis
317