necessary, those keypoints can be identified and
used to estimate more accurately sizes and shapes of
the detected near-duplicate fragments.
Figure 7: Results for sequences (A) and (C) from Fig. 5.
One incorrect keypoint correspondence can be seen.
5 CONCLUSIONS
The paper demonstrates that CBVIR techniques are a
feasible option for a multi-camera video
surveillance. It is shown that near-duplicates
simultaneously seen by several cameras can be fairly
reliably detected. Limited performances of the
approach can be rectified by combining results from
a number of subsequent frames. No assumptions
about the image backgrounds and the type/number
of objects are required.
A novel affine-invariant description of keypoints
(incorporating the keypoint contexts) is a core
element of the method. By using such descriptions,
similar image fragments can be identified by
individual keypoint correspondences, i.e.
verification of configuration constraints (required in
typical retrieval algorithms) is not needed.
REFERENCES
Zhao, W-L., Ngo, C-W., 2009. Scale-rotation invariant
pattern entropy for keypoint-based near-duplicate
detection. IEEE Trans. Image Proc., 18(2): 412-423.
Chum, O., Perdoch, M., Matas, J., 2009. Geometric min-
hashing: Finding a (thick) needle in a haystack. Proc.
IEEE Conf. CVPR’09: 17–24.
Sivic, J., Zisserman. A., 2003. Video Google: A text
retrieval approach to object matching in videos. Proc.
9th IEEE Int. Conf. ICCV’03: 1470-1477.
Zhao, W.-L., Ngo, C.-W., Tan, H.-K. and Wu, X., 2007.
Near-duplicate keyframe identification with interest
point matching and pattern learning. IEEE Trans.
Multimedia, 9(5): 1037–1048.
Paradowski, M., Sluzek, A., 2010. Real-time retrieval of
near- duplicate fragments in images and video-clips.
Proc. ACIVS 2010 (LNCS 6474): 18-29.
Romberg, S., August, M., Ries, Ch.X. and Lienhart, R.,
2012. Robust Feature Bundling. Proc. PCM 2012
(LNCS 7674): 45-56.
Tuytelaars, T., Mikolajczyk, K., 2008. Local inavariant
feature detectors: A survey, Now Publishers Inc.
Matas, J., Chum, O., Urban, M. and Pajdla, T., 2002.
Robust wide baseline stereo from maximally stable
extremal regions, Proc. BMVC’02: 384–393.
Kristensen, F., MacLean, W.J., 2007. Real-time extraction
of maximally stable extremal regions on an FPGA,
Proc. IEEE Symp. ISCAS’07: 165-168.
Salahat, E., Saleh, H., Sluzek, A., Al-Qutayri, M.,
Mohammed, B., and Ismail, M., 2016. Architecture
and method for real-time parallel detection and
extraction of maximally stable extremal regions
(MSERs), U.S. Patent 9,311,555.
Cornelis, N., Van Gool, L., 2008. Fast scale invariant
feature detection and matching on programmable
graphics hardware, Proc. IEEE Conf. CVPR’08
Workshop: 1-8, 2008.
Sluzek, A., 2012. Large vocabularies for keypoint-based
representation and matching of image patches, Proc.
ECCV’12 W&T (LNCS 7583): 229–238.
Suzuki, T., 2012. SIFT-based low complexity keypoint
extraction and its real-time hardware implementation
for full-HD video, Proc. APSIPA’12 Annual Summit
and Conf.: 1-6.
Paschalakis, S., Lee, P. and Bober, M., 2003. An FPGA
system for the high speed extraction, normalization
and classification of moment descriptors, Proc. 13 Int.
Conf. FPL’03 (LNCS 2778): 543-552.
Nister, D., Stewenius, H., 2006. Scalable recognition with
a vocabulary tree, Proc. IEEE Conf. CVPR’06: 2161-
2168.
Jegou, H., Douze, M. and Schmid, C., 2010. Improving
bag-of-features for large scale image search, Int. J.
Comp. Vision 87(3): 316–336.
Schmid, C., Mohr, R., 1997. Local grayvalue invariants
for image retrieval. IEEE Trans PAMI 19(5): 530–534.
Sluzek, A., 2014. Extended keypoint description and the
corresponding improvements in image retrieval, Proc.
ACCV 2014 Workshops, (LNCS 9008): 698-709.
Flusser, J., Suk, T., 1993. Pattern recognition by affine
moment invariants, Pattern Recognition 26: 167–174.
Stewenius, H., Gunderson, S., Pilet, J., 2012. Size matters:
Exhaustive geometric verification for image retrieval.
Proc. ECCV’12 (LNCS 7573): 674-687.