a possibility to provide adequate discrete-time mod-
els. In addition, the simplectic integration methods
are scalable, so mechanical systems with more than
two degrees of freedom can be calculated.
In the context of online parameter estimation us-
ing an augmented EKF, the advantage of symplectic
integration methods increases. The SE method out-
performed the Euler Forward method, where the es-
timated parameters are totally biased, while the re-
sults of the SE approach are more accurate (relative
error lower than 5 %). Furthermore, the estimation
results performed by the SE approach reach similar
(and higher) accuracy compared to the conventional
Runge Kutta methods needing a fraction of computa-
tional effort.
REFERENCES
Auger, F., Hilairet, M., Guerrero, J. M., Monmasson, E.,
and Orlowska-Kowalska, T. (2013). Industrial appli-
cations of the Kalman filter: A review. IEEE Transac-
tions on Industrial Electronics, 60:5458 – 5471.
Beckmann, D., Schappler, M., Dagen, M., and Ortmaier,
T. (2015). New approach using flatness-based con-
trol in high speed positioning: Experimental results.
In IEEE International Conference on Industrial Tech-
nology (ICIT), Sevilla.
Biagiotti, L. and Melchiorri, C. (2008). Trajectory Planning
for Automatic Machines and Robotics. Springer.
Bohlin, T. (2006). Practical Grey-box Process Identifica-
tion. Springer.
Bohn, C. (2000). Recursive Parameter Estimation for Non-
linear Continuous-Time Systems through Sensitivity-
Model-Based Adaptive Filters. PhD thesis, Depart-
ment of Electrical Engineering and Information Sci-
ences, Ruhr-Universit¨at Bochum.
Grewal, M. and Andrews, A. (2008). Kalman Filtering:
Theory and Practice Using MATLAB. Wiley.
Hairer, E., Lubich, C., and Wanner, G. (2006). Geometric
Numerical Integration: Structure-Preserving Algo-
rithms for Ordinary Differential Equations. Springer.
Ljung, L. (1979). Asymptotic behavior of the extended
Kalman filter as a parameter estimator for linear sys-
tems. IEEE Transactions on Automatic Control,
24(1):36–50.
Nevaranta, N., Parkkinen, J., Lindh, T., Niemela, M.,
Pyrhonen, O., and Pyrhonen, J. (2015). Online estima-
tion of linear tooth belt drive system parameters. IEEE
Transactions on Industrial Electronics, 62(11):7214–
7223.
Niiranen, J. (1999). Fast and accurate symmetric Euler al-
gorithm for electromechanical simulations. In Pro-
ceedings of 6th. Int. Conf. Electrimacs, volume 1,
pages 71 – 78, Lisboa, Portugal.
¨
Oltjen, J., Kotlarski, J., and Ortmaier, T. (2015). Reduc-
tion of end effector oscillations of a parallel mecha-
nism with modified motion profiles. In Proceedings of
IEEE 10th Conference on Industrial Electronics and
Applications (ICIEA), pages 823–829.
Riva, M. H., Beckmann, D., Dagen, M., and Ortmaier, T.
(2015). Online parameter and process covariance esti-
mation using adaptive EKF and SRCuKF approaches.
In IEEE Multi-Conference on Systems and Control
(MSC 2015), Sydney, Australia.
Sch¨utte, F., Beineke, S., Rolfsmeier, A., and Grotstollen, H.
(1997). Online identification of mechanical parame-
ters using extended Kalman filter. In Proceedings of
IEEE Annual Meeting of Industry Applications Soci-
ety.
Szabat, K. and Orlowska-Kowalska, T. (2012). Application
of the Kalman Filters to the High-Performance Drive
System With Elastic Coupling. IEEE Transactions on
Industrial Electronics, 59(11):4226 – 4235.
Welch, G. and Bishop, G. (2006). An introduction to the
Kalman filter. Technical report, Chapel Hill, NC,
USA.