Existence Conditions of Asymptotically Stable 2-D Feedback Control Systems on the Basis of Block Matrix Diagonalization

Giido Izuta

2016

Abstract

This work is concerned with the existence of asymptotically stable 2-D (2-dimensional) systems by means of a feedback control model represented by the system of partial difference equations and their Lagrange solutions. Thus, the goal is to establish a controller that provides a feedback control system with state variables depending solely on its Lagrange solution in the sense that the solution to the variable state is not a linear combination of other Lagrange solutions. Roughly speaking, the results showed that, to achieve such a control system, the controller has to diagonalize the block matrices of the matrices composing the system description model. Finally, a numerical example is presented to show how the controller is designed in order to generate a stable feedback control with given Lagrange solutions.

References

  1. Anderson, B. D. O. and Jury, E. I. (1974). Stability of multidimensional recursive filters. In IEEE Trans. Circuits and Syst.Proc. IEEE, number 21, pages 300-304.
  2. Attasi, S. (1973). Systemes lineaires homogenes a deux indices. In Rapport Laboria, number 31.
  3. Bose, N. K. (1982). Applied multdimensional systems theory. England: Van Nostradand Reinhold Co.
  4. Cheng, S. S. (2003). Partial difference equations. London: Taylor & Francis.
  5. Du, C. and Xie, L. (2002). H-infinity control and filtering of two-dimensional systems. Berlin, Germany: Springer Verlag.
  6. Elaydi, S. (2005). An introduction to difference equations. USA: Springer Science.
  7. Fornasini, E. and Marchesini, G. (1978). Doubly indexed dynamical systems: State space models and structural properties. In Math. Syst. Th., number 12, pages 59- 72.
  8. Fornasini, E. and Marchesini, G. (1980). Stability analysis of 2-d systems. In IEEE Trans. Circ. and Syst., volume CAS, pages 1210-1217.
  9. Givone, D. D. and Roesser, R. P. (1972). Multidimensional linear iterative circuits - general properties. In IEEE Trans. Comp., volume C, pages 1067-1073.
  10. Izuta, G. (2007). Stability and disturbance attenuation of 2- d discrete delayed systems via memory state feedback controller. Int. J. Gen. Systems, 36(3):263-280.
  11. Izuta, G. (2010). Stability analysis of 2-d discrete systems on the basis of lagrange solutions and doubly similarity transformed systems. In Proc. 35th annual conf. IEEE IES, Porto, Portugal.
  12. Izuta, G. (2012). Networked 2-d linear discrete feedback control systems design on the basis of observer controller. In Proc. 16th Int. Conf. on System Theory, Control and Computing IEEE CS, Sinaia, Romania.
  13. Izuta, G. (2014a). Controller design for 2-d discrete linear networked systems. In Proc. The Int. Electrical Eng. Congress, Pataya, Thailand.
  14. Izuta, G. (2014b). On the asymptotic stability analysis of a certain type of discrete-time 3-d linear systems. In Proc. 11th Int. Conf. on Informatics in Control, Automation and Robotics (ICINCO 2014), Vienna, Austria.
  15. Jerri, A. J. (1996). Linear difference equations with discrete transform methods. Netherlands: Kluwer Acad. Pub.
  16. Kaczorek, T. (1985). Two-dimensional linear systems. Berlin: Springer Verlag.
  17. Lim, J. S. (1990). Two-dimensional linear signal and image processing. New Jersey, USA: Prentice Hall.
  18. Pazke, W., Lam, J., Galkowski, K., and Xu, S. (2004). Robust stability and stabilisation of 2d discrete statedelayed systems. In Systems and Control, volume 51, pages 277-291.
  19. Piekarski, M. S. (1977). Algebraic characterization of matrices whose multivariable characteristic polynomial is hurwitzian. In Proc. Int. Symp. Operator Theory, pages 121-126.
  20. Rogers, E., Krzysztof, G., and Owens, D. H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes. Springer, London.
  21. Tzafestas, S. G. (1986). Multidimensional systems - Techniques and Applications. New York: Marcel Dekker.
  22. Zerz, E. (2000). Topics in Multidimensional Linear Systems Theory. Springer.
Download


Paper Citation


in Harvard Style

Izuta G. (2016). Existence Conditions of Asymptotically Stable 2-D Feedback Control Systems on the Basis of Block Matrix Diagonalization . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-198-4, pages 463-470. DOI: 10.5220/0005975604630470


in Bibtex Style

@conference{icinco16,
author={Giido Izuta},
title={Existence Conditions of Asymptotically Stable 2-D Feedback Control Systems on the Basis of Block Matrix Diagonalization},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2016},
pages={463-470},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005975604630470},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Existence Conditions of Asymptotically Stable 2-D Feedback Control Systems on the Basis of Block Matrix Diagonalization
SN - 978-989-758-198-4
AU - Izuta G.
PY - 2016
SP - 463
EP - 470
DO - 10.5220/0005975604630470