Volume 146 of the series International Series in
Operations Research & Management Science. pp. 449-
468.
Das, S., Maity, S., Qub, B.-Y., Suganthan, P.N. (2011).
Real-parameter evolutionary multimodal optimization:
a survey of the state-of-the art. Swarm and Evolutionary
Computation, 1. pp. 71–88.
Deb, K., Saha, A. (2010). Finding Multiple Solutions for
Multimodal Optimization Problems Using a Multi-
Objective Evolutionary Approach. In Proceedings of
the 12th Annual Conference on Genetic and
Evolutionary Computation, GECCO 2010. ACM, New
York. pp. 447-454.
Epitropakis, M.G., Li, X., Burke, E.K. (2013). A dynamic
archive niching differential evolution algorithm for
multimodal optimization. In Proc. 2013 IEEE Congress
on Evolutionary Computation (CEC’13). pp. 79-86.
Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Reading. MA:
Addison-Wesley.
Holland, J. (1975). Adaptation in Natural and Artificial
Systems. University of Michigan Press.
ics.uci.edu (2015). UC Irvine Machine Learning
Repository. [online] Available at:
http://archive.ics.uci.edu/ml/
Ishibuchi H. (2005). Hybridization of fuzzy GBML
approaches for pattern classification problems. In IEEE
Trans. on Systems, Man, and Cybernetics – Part B:
Cybernetics, Volume 35, Issue 2. pp. 359-365.
Kaklaukas, A. (2015). Biometric and Intelligent Decision
Making Support. Intelligent Systems Reference
Library, Vol. 81. 2015, XII. Springer-Verlag, Berlin.
KEEL (2015). KEEL, Knowledge Extraction based on
Evolutionary Learning. [online] Available at:
http://www.keel.es.
Li, B., Li. J., Tang, K., Yao, X. (2015). Many-Objective
Evolutionary Algorithms: A Survey. ACM Computing
Surveys (CSUR), v.48 n.1. pp. 1-35.
Li, X., Engelbrecht, A., Epitropakis, M.G. (2013a).
Benchmark functions for CEC’2013 special session and
competition on niching methods for multimodal
function optimization. Evol. Comput. Mach. Learn.
Group, RMIT University, Melbourne, VIC, Australia.
Tech. Rep.
Li, X., Engelbrecht, A., Epitropakis, M. (2013b). Results of
the 2013 IEEE CEC Competition on Niching Methods
for Multimodal Optimization. Report presented at 2013
IEEE Congress on Evolutionary Computation
Competition on: Niching Methods for Multimodal
Optimization.
Liu, Y., Ling, X., Shi, Zh., Lv, M., Fang. J., Zhang, L.
(2011). A Survey on Particle Swarm Optimization
Algorithms for Multimodal Function Optimization.
Journal of Software, Vol. 6, No. 12. pp. 2449-2455.
Maashi M., Kendall, G., Özcan, E. (2015). Choice function
based hyper-heuristics for multi-objective optimization.
Applied Soft Computing, Volume 28. pp. 312–326.
Molina, D., Puris, A., Bello, R., Herrera, F. (2013).
Variable mesh optimization for the 2013 CEC special
session niching methods for multimodal optimization.
In Proc. 2013 IEEE Congress on Evolutionary
Computation (CEC’13). pp. 87-94.
Pillay, N. (2015). An Overview of Evolutionary Algorithms
and Hyper Heuristics. In 2015 IEEE Congress on
Evolutionary Computation (IEEE CEC 2015), Sendai,
Japan. [online] Available at:
http://www.cs.usm.maine.edu/~congdon/Conferences/
CEC2015/Pillay.CEC2015.tutorial.pdf.
Preuss, M., Wessing, S. (2013). Measuring multimodal
optimization solution sets with a view to multiobjective
techniques. EVOLVE – A Bridge between Probability,
Set Oriented Numerics, and Evolutionary Computation
IV. AISC, vol. 227, Springer, Heidelberg. pp. 123–137.
Qu, B., Liang, J., Suganthan P.N., Chen, T. (2012).
Ensemble of Clearing Differential Evolution for Multi-
modal Optimization. Advances in Swarm Intelligence
Lecture Notes in Computer Science, Volume 7331. pp.
350-357.
Ray, T., Liew K.M. (2002). A Swarm Metaphor for Multi-
objective Design Optimization. Engineering
Optimization, 34. pp. 141-153.
Ross, P. (2005). Hyper-Heuristics. Search Methodologies.
pp. 529-556.
Sen, P., Yang, J.-B. (2012). Multiple Criteria Decision
Support in Engineering Design. Springer Science &
Business Media.
Singh, G., Deb, K. (2006). Comparison of multi-modal
optimization algorithms based on evolutionary
algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference, Seattle. pp.
1305–1312.
Sopov, E., Stanovov, V., Semenkin, E. (2015). Multi-
strategy Multimodal Genetic Algorithm for De-signing
Fuzzy Rule Based Classifiers. In Proceedings of 2015
IEEE Symposium Series on Computational Intelligence
(IEEE SSCI 2015), Cape Town, South Africa. pp.167-
173.
Sopov, E. (2015a). A Self-configuring Metaheuristic for
Control of Multi-Strategy Evolutionary Search. ICSI-
CCI 2015, Part III, LNCS 9142. pp. 29-37.
Sopov, E. (2015b). Multi-strategy Genetic Algorithm for
Multimodal Optimization. In Proceedings of the 7th
International Joint Conference on Computational
Intelligence (IJCCI 2015) - Volume 1: ECTA, Portugal.
pp. 55-63.
Yu, E.L., Suganthan, P.N. (2010). Ensemble of niching
algorithms. Information Sciences, Vol. 180, No. 15. pp.
2815-2833.