Alexandre, L. A. (2016a). 3d object recognition using con-
volutional neural networks with transfer learning be-
tween input channels. In Intelligent Autonomous Sys-
tems 13, pages 889–898. Springer.
Alexandre, L. A. (2016b). 3d object recognition using con-
volutional neural networks with transfer learning be-
tween input channels. In Intelligent Autonomous Sys-
tems 13, pages 889–898. Springer.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In Computer vision–
ECCV 2006, pages 404–417. Springer.
Bengio, Y. (2009). Learning deep architectures for ai. Foun-
dations and trends
R
in Machine Learning, 2(1):1–
127.
Bo, L., Ren, X., and Fox, D. (2011). Depth kernel descrip-
tors for object recognition. In Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Con-
ference on, pages 821–826. IEEE.
Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. The Journal
of Machine Learning Research, 12:2493–2537.
Deng, L. and Yu, D. (2014). Deep learning: Methods and
applications. Foundations and Trends in Signal Pro-
cessing, 7(3–4):197–387.
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-
r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T. N., et al. (2012). Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. Signal Processing
Magazine, IEEE, 29(6):82–97.
Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural com-
putation, 18(7):1527–1554.
Lai, K., Bo, L., Ren, X., and Fox, D. (2011a). A large-
scale hierarchical multi-view rgb-d object dataset. In
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 1817–1824. IEEE.
Lai, K., Bo, L., Ren, X., and Fox, D. (2011b). A large-
scale hierarchical multi-view rgb-d object dataset. In
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 1817–1824. IEEE.
Le, Q. V. (2013). Building high-level features using large
scale unsupervised learning. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 8595–8598. IEEE.
Liang, D., Weng, K., Wang, C., Liang, G., Chen, H., and
Wu, X. (2014). A 3d object recognition and pose es-
timation system using deep learning method. In In-
formation Science and Technology (ICIST), 2014 4th
IEEE International Conference on, pages 401–404.
IEEE.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee.
Nair, V. and Hinton, G. E. (2009a). 3d object recognition
with deep belief nets. In Advances in Neural Informa-
tion Processing Systems, pages 1339–1347.
Nair, V. and Hinton, G. E. (2009b). 3d object recognition
with deep belief nets. In Advances in Neural Informa-
tion Processing Systems, pages 1339–1347.
Savarese, S. and Fei-Fei, L. (2007). 3d generic object cate-
gorization, localization and pose estimation. In Com-
puter Vision, 2007. ICCV 2007. IEEE 11th Interna-
tional Conference on, pages 1–8. IEEE.
Schwarz, M., Schulz, H., and Behnke, S. (2015). Rgb-
d object recognition and pose estimation based on
pre-trained convolutional neural network features. In
Robotics and Automation (ICRA), 2015 IEEE Interna-
tional Conference on, pages 1329–1335. IEEE.
Sermanet, P., Kavukcuoglu, K., Chintala, S., and LeCun, Y.
(2013). Pedestrian detection with unsupervised multi-
stage feature learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 3626–3633.
Smolensky, P. (1986). Information processing in dynamical
systems: Foundations of harmony theory.
Socher, R., Huval, B., Bath, B., Manning, C. D., and Ng,
A. Y. (2012). Convolutional-recursive deep learning
for 3d object classification. In Advances in Neural
Information Processing Systems, pages 665–673.
Toldo, R., Castellani, U., and Fusiello, A. (2009). A bag of
words approach for 3d object categorization. In Com-
puter Vision/Computer Graphics CollaborationTech-
niques, pages 116–127. Springer.
Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique
signatures of histograms for local surface descrip-
tion. In Computer Vision–ECCV 2010, pages 356–
369. Springer.
Tombari, F., Salti, S., and Stefano, L. D. (2011). A com-
bined texture-shape descriptor for enhanced 3d fea-
ture matching. In Image Processing (ICIP), 2011 18th
IEEE International Conference on, pages 809–812.
IEEE.
Yu, J., Weng, K., Liang, G., and Xie, G. (2013). A vision-
based robotic grasping system using deep learning for
3d object recognition and pose estimation. In Robotics
and Biomimetics (ROBIO), 2013 IEEE International
Conference on, pages 1175–1180. IEEE.
ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics
318