resolution is too low and it misses a fair amount of
details. The integration of first principles and empir-
ical model enables the combined model to maintain
the scientific insights into pollutant formation pro-
cesses and prognostic abilities for atypical scenarios,
but have an improved forecasting ability for the mi-
crolocation.
The analysis shows that the hybrid model under
realistic conditions provides improved forecasting re-
sults than used first-principles models. An effective
methodology for the development of a model with an
increased reliability of ozone forecasting that can be
used for alerting the inhabitants according to regula-
tions has been demonstrated.
Work on improved alerts based on on-line air-
quality model will be continued for obtaining better
air-quality forecasting models using other strategies
on prediction.
ACKNOWLEDGEMENTS
This work was supported by the Slovenian Research
Agency with Grant Development and Implementa-
tion of a Method for On-Line Modelling and Fore-
casting of Air Pollution, L2-5475 and Grant Systems
and Control, P2-0001. The Slovenian Environment
Agency provided part of the data.
REFERENCES
Al-Alawi, S. M., Abdul-Wahab, S. A., and Bakheit, C. S.
(2008). Combining principal component regression
and artificial neural-networks for more accurate pre-
dictions of ground-level ozone. Environ Modell Softw,
23:396–403.
´
Alvarez, M. A., Luengo, D., and Lawrence, N. D. (2009).
Latent force models. In 12th Int. Conf. on Artificial
Intelligence and Statistics, volume 5, pages 5–9.
AriaNet Srl. and ENEA (2015). Qualearia - forecast system
for the air quality in italy and europe. http://www.aria-
net.eu/QualeAria.
Boˇznar, M. Z., Mlakar, P., and Graˇsiˇc, B. (2012). Short-
term fine resolution WRF forecast data validation in
complex terrain in Slovenia. International journal of
environment and pollution, 50(1-4):12–21.
Boˇznar, M. Z., Mlakar, P., Graˇsiˇc, B., Calori, G., D’Allura,
A., and Finardi, S. (2014). Operational background
air pollution prediction over Slovenia by QualeAria
modelling system - validation. International journal
of environment and pollution, 54(2-4):175–183.
Chen, N., Qian, Z., Meng, X., and Nabney, I. (2013).
Short-term wind power forecasting using Gaussian
processes. In International joint conference on Ar-
tificial Intelligence IJCAI’13, pages 1771–1777.
European Parliament and Council of the EU (2010). Direc-
tive 2008/50/EC on ambient air quality and cleaner
air for Europe. Number L 152. Official Journal of the
European Union, Brussels.
Goyal, P. and Kumar, A. (2012). Air quality forecasting
throught integrated model using air dispersion model
and neural network. In Latest advances in systems sci-
ence and computational intelligence, pages 219–224.
WSEAS.
Gradiˇsar, D., Graˇsiˇc, B., Boˇznar, M., Mlakar, P., and Koci-
jan, J. (2015). Improved local-ozone forecasting using
the integrated model. Technical Report DP - 11958,
Jozef Stefan Institute, Ljubljana.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia,
A., Balzarini, A., , Bar, R., Bellasio, R., Brunner,
D., Chemel, C., Curci, G., Flemming, J., Forkel, R.,
Giordano, L., Jimnez-Guerrero, P., Hirtl, M., Hodzic,
A., Honzak, L., Jorba, O., Knote, C., Kuenen, J. J.,
Makar, P. A., Manders-Groot, A., Neal, L., Prez,
J. L., Pirovano, G., Pouliot, G., Jose, R. S., Savage,
N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K.,
ˇ
Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and
Galmarini, S. (2015). Evaluation of operational on-
line-coupled regional air quality models over Europe
and North America in the context of AQMEII phase
2. Part I: Ozone. Atmospheric Environment, 115:404–
420.
Kocijan, J. (2016). Modelling and Control of Dynamic Sys-
tems Using Gaussian Process Models. Springer Inter-
national Publishing, Cham.
Kocijan, J., Gradiˇsar, D., Boˇznar, M. Z., Graˇsiˇc, B., and
Mlakar, P. (2016). On-line algorithm for ground-level
ozone prediction with a mobile station. Atmospheric
Environment, 131:326–333.
Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A.,
Klein, T., Miranda, A. I., Monteiro, A., Hirtl, M.,
Tarvainen, V., Boy, M., Peuch, V.-H., Poupkou, A.,
Kioutsioukis, I., Finardi, S., Sofiev, M., Sokhi, R.,
Lehtinen, K. E. J., Karatzas, K., San Jos´e, R., Astitha,
M., Kallos, G., Schaap, M., Reimer, E., Jakobs,
H., and Eben, K. (2012). A review of operational,
regional-scale, chemical weather forecasting mod-
els in Europe. Atmospheric Chemistry and Physics,
12(1):1–87.
MacKay, D. J. C. (1998). Introduction to Gaussian pro-
cesses. NATO ASI Series, 168:133–166.
MEIS d.o.o. (2015). KOoreg regional air pollution control
prognostic and diagnostic modelling system.
Mlakar, P. and Boˇznar, M. Z. (2011). Advanced air pollu-
tion, chapter Artificial neural networks: a useful tool
in air pollution and meteorological modelling, pages
495–508. InTech, Rijeka.
Pelliccioni, A. and Tirabassi, T. (2006). Air dispersion
model and neural network: A new perspective for inte-
grated models in the simulation of complex situations.
Environmental Modelling & Software, 21(4):539–546.
Petelin, D., Grancharova, A., and Kocijan, J. (2013). Evolv-
ing Gaussian process models for the prediction of
ozone concentration in the air. Simulation Modelling
Practice and Theory, 33(1):68–80.