˙q
3
˙q
2
˙q
1
˙
q
q
q/
˙
q
q
q
s
0
0.2
0.4
0.6
0.8
1
−1
−0.5
0
0.5
1
τ
3
τ
2
τ
1
τ
τ
τ/
τ
τ
τ
s
0
0.2
0.4
0.6
0.8
1
−1
−0.5
0
0.5
1
Figure 11: Top: Normalized joint velocities. Bottom: Nor-
malized motor torques.
method. By means of numerical examples we have
shown that the proposed approach performs nearly
equally to an existing one, with the benefit that opti-
mal trajectories from polygonal paths without an ad-
ditional tube restriction can be derived. Future works
will include among other things further improvements
of the algorithm, an automatism for the tube genera-
tion and the extension to spatial paths.
ACKNOWLEDGEMENTS
This work has been supported by the Linz Center of
Mechatronics (LCM) in the framework of the Aus-
trian COMET-K2 program.
REFERENCES
Antonelli, G., Chiaverini, S., Palladino, M., Gerio, G. P.,
and Renga, G. (2005). Joint space point-to-point mo-
tion planning for robots: An industrial implementa-
tion. In Ztek, P., editor, Proceedings of the 16th IFAC
World Congress.
Bobrow, J. E., Dubowsky, S., and Gibson, J. S. (1985).
Time-optimal control of robotic manipulators along
specified paths. International Journal Robotics Re-
sarch, 4:3–17.
Bremer, H. (2008). Elastic Multibody Dynamics: A Direct
Ritz Approach. Springer Verlag, Heidelberg.
DeBoor, C. (1978). A practical guide to splines. Springer.
Debrouwere, F., Van Loock, W., Pipeleers, G., and Sw-
evers, J. (2014). Time-optimal tube following for
robotic manipulators. In Advanced Motion Control
(AMC),2014 IEEE 13th International Workshop on,
pages 392–397.
Gattringer, H., Oberherber, M., and Springer, K. (2014).
Extending continuous path trajectories to point-to-
point trajectories by varying intermediate points.
International Journal of Mechanics and Control,
15(01):35–43.
Geu Flores, F. and Kecskemthy, A. (2012). Time-optimal
path palanning along specified trajectories. In Gat-
tringer, H. and Gerstmayr, J., editors, Multibody Sys-
tem Dynamics, Robotics and Control, pages 1–15.
Johanni, R. (1988). Optimale Bahnplanung bei Industrier-
obotern. Technische Universit¨at M¨unchen.
Johnson, S. G. (2011). The NLopt nonlinear-optimization
package.
Mørken, K., Reimers, M., and Schulz, C. (2009). Com-
puting intersections of planar spline curves using knot
insertion. Comput. Aided Geom. Des., 26(3):351–366.
Pfeiffer, F. and Johanni, R. (1987). A concept for manipula-
tor trajectory planning. IEEE Journal of Robotics and
Automation, 3(2):115 –123.
Pham, Q. (2013). A general, fast, and robust implementa-
tion of the time-optimal path parameterization algo-
rithm. CoRR, abs/1312.6533.
Piegl, L. A. and Tiller, W. (1997). The NURBS book (2. ed.).
Monographs in visual communication. Springer.
Rajan, V. (1985). Minimum time trajectory planning. In
Robotics and Automation. Proceedings. 1985 IEEE
International Conference on, volume 2, pages 759–
764.
Reynoso-Mora, P., Chen, W., and Tomizuka, M. (2013).
On the time-optimal trajectory planning and control of
robotic manipulators along predefined paths. In Amer-
ican Control Conference (ACC), 2013, pages 371–
377.
Shiller, Z. and Dubowsky, S. (1988). Global time optimal
motions of robotic manipulators in the presence of ob-
stacles. In Robotics and Automation, 1988. Proceed-
ings., 1988 IEEE International Conference on, pages
370–375 vol.1.
Shin, K. G. and McKay, N. D. (1986). A dynamic pro-
gramming approach to trajectory planning of robotic
manipulators. Automatic Control, IEEE Transactions
on, 31(6):491–500.
Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G.
(2009). Robotics - Modelling, Planning and Control.
Advanced Textbooks in Control and Signal Process-
ing series. Springer.
Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter,
J., and Diehl, M. (2009a). Time-optimal path tracking
for robots: A convex optimization approach. Auto-
matic Control, IEEE Transactions on, 54(10):2318–
2327.
Verscheure, D., Diehl, M., De Schutter, J., and Swevers,
J. (2009b). Recursive log-barrier method for on-line
time-optimal robot path tracking. In American Con-
trol Conference, 2009. ACC ’09., pages 4134 –4140.
Zaverucha, G. (2005). Approximating polylines by curved
paths. In Mechatronics and Automation, 2005 IEEE
International Conference, volume 2, pages 758–763
Vol. 2.
Zou, A.-M., Hou, Z.-G., Tan, M., and Liu, D. (2006). Path
planning for mobile robots using straight lines. In Net-
working, Sensing and Control, 2006. ICNSC ’06. Pro-
ceedings of the 2006 IEEE International Conference
on, pages 204–208.