REFERENCES
Aghakhani, N., Geravand, M., Shahriari, N., Vendittelli,
M., and Oriolo, G. (2013). Task control with re-
mote center of motion constraint for minimally in-
vasive robotic surgery. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages
5807–5812.
Azimian, H., Patel, R. V., and Naish, M. D. (2010). On
constrained manipulation in robotics-assisted mini-
mally invasive surgery. In IEEE RAS and EMBS In-
ternational Conference on Biomedical Robotics and
Biomechatronics (BioRob), pages 650–655.
Azizian, M., Khoshnam, M., Najmaei, N., and Patel, R. V.
(2014). Visual servoing in medical robotics: a sur-
vey. part i: endoscopic and direct vision imaging–
techniques and applications. The International Jour-
nal of Medical Robotics and Computer Assisted
Surgery, 10(3):263–274.
Boctor, E. M., Webster III, R. J., Mathieu, H., Okamura,
A. M., and Fichtinger, G. (2004). Virtual remote
center of motion control for needle placement robots.
Computer Aided Surgery, 9(5):175–183.
Dalvand, M. M. and Shirinzadeh, B. (2012). Remote
centre-of-motion control algorithms of 6-rrcrr paral-
lel robot assisted surgery system (pramiss). In IEEE
International Conference on Robotics and Automation
(ICRA), pages 3401–3406.
Duflot, L.-A., Krupa, A., Tamadazte, B., and Andreff, N.
(2016). Towards ultrasound-based visual servoing us-
ing shearlet coefficients. In IEEE International Con-
ference on Robotics and Automation (ICRA).
Funda, J., Taylor, R. H., Eldridge, B., Gomory, S., and
Gruben, K. G. (1996). Constrained cartesian motion
control for teleoperated surgical robots. IEEE Trans-
actions on Robotics and Automation, 12(3):453–465.
Gasparetto, A., Boscariol, P., Lanzutti, A., and Vidoni, R.
(2015). Path planning and trajectory planning algo-
rithms: A general overview. In Motion and Operation
Planning of Robotic Systems, pages 3–27. Springer.
Krupa, A., Doignon, C., Gangloff, J., and De Mathelin,
M. (2002). Combined image-based and depth visual
servoing applied to robotized laparoscopic surgery.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 1, pages 323–329.
Kuo, C.-H., Dai, J. S., and Dasgupta, P. (2012). Kinematic
design considerations for minimally invasive surgi-
cal robots: an overview. The International Journal
of Medical Robotics and Computer Assisted Surgery,
8(2):127–145.
Locke, R. C. and Patel, R. V. (2007). Optimal remote center-
of-motion location for robotics-assisted minimally-
invasive surgery. In IEEE International Conference
on Robotics and Automation, pages 1900–1905.
Marinho, M. M., Bernardes, M. C., and B
´
o, A. P. (2014). A
programmable remote center-of-motion controller for
minimally invasive surgery using the dual quaternion
framework. In 5th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomecha-
tronics, pages 339–344.
Mayer, H., Nagy, I., and Knoll, A. (2004). Kinematics and
modelling of a system for robotic surgery. In On Ad-
vances in Robot Kinematics, pages 181–190. Springer.
Nageotte, F., Zanne, P., Doignon, C., and de Mathe-
lin, M. (2006). Visual servoing-based endoscopic
path following for robot-assisted laparoscopic surgery.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2364–2369.
Nakamura, Y., Hanafusa, H., and Yoshikawa, T. (1987).
Task-priority based redundancy control of robot ma-
nipulators. The International Journal of Robotics Re-
search, 6(2):3–15.
Osa, T., Staub, C., and Knoll, A. (2010). Framework of
automatic robot surgery system using visual servoing.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1837–1842.
Pham, C. D., Coutinho, F., Leite, A. C., Lizarralde, F.,
From, P. J., and Johansson, R. (2015). Analysis of a
moving remote center of motion for robotics-assisted
minimally invasive surgery. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 1440–1446.
Seon, J.-A., Tamadazte, B., and Andreff, N. (2015). De-
coupling path following and velocity profile in vision-
guided laser steering. IEEE Transactions on Robotics,
31(2):280–289.
3D Path Following with Remote Center of Motion Constraints
91