5 CONCLUSIONS
A new structure-preserving balancing technique for
skew-Hamiltonian/Hamiltonian matrix pencils is pre-
sented. Symplectic (J -)permutations and equivalence
scaling transformations are used. Several enhance-
ments are described, which avoid a large increase of
the norms of the pencil matrices, and/or of the con-
dition numbers of the scaling transformations, which
can appear when using the standard balancing pro-
cedure. The numerical results show a good perfor-
mance of the new technique in comparison with state-
of-the-art solvers. Tens of examples from well-known
benchmark collections have been investigated.
ACKNOWLEDGEMENTS
The NICONET support is highly acknowledged.
REFERENCES
Abels, J. and Benner, P. (1999). CAREX—A collection
of benchmark examples for continuous-time algebraic
Riccati equations (Version 2.0). SLICOT Working
Note 1999-14.
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dem-
mel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., and Sorensen, D.
(1999). LAPACK Users’ Guide: Third Edition. SIAM,
Philadelphia.
Benner, P. (2001). Symplectic balancing of Hamiltonian
matrices. SIAM J. Sci. Comput., 22(5):1885–1904.
Benner, P., Byers, R., Losse, P., Mehrmann, V., and
Xu, H. (2007). Numerical solution of real skew-
Hamiltonian/Hamiltonian eigenproblems. Technical
report, Technische Universit¨at Chemnitz, Chemnitz.
Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002).
Numerical computation of deflating subspaces of
skew Hamiltonian/Hamiltonian pencils. SIAM J. Ma-
trix Anal. Appl., 24(1):165–190.
Benner, P., Kressner, D., and Mehrmann, V. (2005). Skew-
Hamiltonian and Hamiltonian eigenvalue problems:
Theory, algorithms and applications. In Proceedings
of the Conference on Applied Mathematics and Scien-
tific Computing, 3–39. Springer-Verlag, Dordrecht.
Benner, P., Sima, V., and Voigt, M. (2012a). L
∞
-norm com-
putation for continuous-time descriptor systems us-
ing structured matrix pencils. IEEE Trans. Automat.
Contr., AC-57(1):233–238.
Benner, P., Sima, V., and Voigt, M. (2012b). Robust and
efficient algorithms for L
∞
-norm computations for de-
scriptor systems. In 7th IFAC Symposium on Robust
Control Design (ROCOND’12), 189–194. IFAC.
Benner, P., Sima, V., and Voigt, M. (2013a). FOR-
TRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems. Part I: Al-
gorithms and applications. SLICOT Working Note
2013-1.
Benner, P., Sima, V., and Voigt, M. (2013b). FOR-
TRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems. Part II: Im-
plementation and numerical results. SLICOT Working
Note 2013-2.
Bruinsma, N. A. and Steinbuch, M. (1990). A fast algo-
rithm to compute the H
∞
-norm of a transfer function.
Systems Control Lett., 14(4):287–293.
Jiang, P. and Voigt, M. (2013). MB04BV — A FOR-
TRAN 77 subroutine to compute the eigenvectors as-
sociated to the purely imaginary eigenvalues of skew-
Hamiltonian/Hamiltonian matrix pencils. SLICOT
Working Note 2013-3.
Kressner, D. (2005). Numerical Methods for General and
Structured Eigenvalue Problems. Springer-Verlag,
Berlin.
Laub, A. J. (1979). A Schur method for solving algebraic
Riccati equations. IEEE Trans. Automat. Contr., AC–
24(6):913–921.
Leibfritz, F. and Lipinski, W. (2003). Description of the
benchmark examples in COMPl
e
ib. Technical report,
Department of Mathematics, University of Trier, D–
54286 Trier, Germany.
MATLAB (2016). MATLAB
R
Primer. R2016a. The Math-
Works, Inc., 3 Apple Hill Drive, Natick, MA.
Mehrmann, V. (1991). The Autonomous Linear Quadratic
Control Problem. Theory and Numerical Solution.
Springer-Verlag, Berlin.
Paige, C. and Van Loan, C. F. (1981). A Schur decomposi-
tion for Hamiltonian matrices. Lin. Alg. Appl., 41:11–
32.
Sima, V. (1996). Algorithms for Linear-Quadratic Opti-
mization. Marcel Dekker, Inc., New York.
Sima, V. and Benner, P. (2015a). Pitfalls when solving
eigenproblems with applications in control engineer-
ing. In Proceedings of the 12th International Con-
ference on Informatics in Control, Automation and
Robotics (ICINCO-2015), 21-23 July, 2015, Colmar,
France, volume 1, 171–178. SciTePress.
Sima, V. and Benner, P. (2015b). Solving SLICOT bench-
marks for continuous-time algebraic Riccati equa-
tions by Hamiltonian solvers. In Proceedings of the
2015 19th International Conference on System The-
ory, Control and Computing (ICSTCC 2015), October
14-16, 2015, Cheile Gradistei, Romania, 1–6. IEEE.
Van Loan, C. F. (1984). A symplectic method for approx-
imating all the eigenvalues of a Hamiltonian matrix.
Lin. Alg. Appl., 61:233–251.
Ward, R. C. (1981). Balancing the generalized eigenvalue
problem. SIAM J. Sci. Stat. Comput., 2:141–152.