ACKNOWLEDGEMENTS
We acknowledge the support by the EU’s
Seventh Framework Programme under grant
agreement no 607400 (TRAX, Training net-
work on tRAcking in compleX sensor systems)
http://www.trax.utwente.nl/.
REFERENCES
Alparone, L., Barni, M., Bartolini, F., and Cappellini, V.
(1996). Adaptively weighted vector-median filters
for motion-fields smoothing. In Acoustics, Speech,
and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference
on, volume 4, pages 2267–2270. IEEE.
Azim, A. and Aycard, O. (2012). Detection, classification
and tracking of moving objects in a 3d environment.
In Intelligent Vehicles Symposium (IV), 2012 IEEE,
pages 802–807. IEEE.
Bar-Shalom, Y. (1987). Tracking and data association.
Academic Press Professional, Inc.
Blei, D. M. and Frazier, P. I. (2011). Distance dependent
chinese restaurant processes. The Journal of Machine
Learning Research, 12:2461–2488.
Choi, J., Ulbrich, S., Lichte, B., and Maurer, M. (2013).
Multi-target tracking using a 3d-lidar sensor for au-
tonomous vehicles. In Intelligent Transportation
Systems-(ITSC), 2013 16th International IEEE Con-
ference on, pages 881–886. IEEE.
Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V.,
Quadros, A., Morton, P., and Frenkel, A. (2011).
On the segmentation of 3d lidar point clouds. In
Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on, pages 2798–2805.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. International
Journal of Robotics Research (IJRR).
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.
(2003). Bayesian data analysis. Chapman and
Hall/CRC Texts in Statistical Science.
Li, Q., Zhang, L., Mao, Q., Zou, Q., Zhang, P., Feng, S.,
and Ochieng, W. (2014). Motion field estimation for a
dynamic scene using a 3d lidar. Sensors, 14(9):16672–
16691.
Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dol-
gov, D., Ettinger, S., Haehnel, D., Hilden, T., Hoff-
mann, G., Huhnke, B., et al. (2008). Junior: The
stanford entry in the urban challenge. Journal of field
Robotics, 25(9):569–597.
Moosmann, F., Pink, O., and Stiller, C. (2009). Segmen-
tation of 3d lidar data in non-flat urban environments
using a local convexity criterion. In Intelligent Vehi-
cles Symposium, 2009 IEEE, pages 215–220. IEEE.
Morton, P., Douillard, B., and Underwood, J. (2011). An
evaluation of dynamic object tracking with 3d lidar.
In Proc. of the Australasian Conference on Robotics
& Automation (ACRA).
Petrovskaya, A. and Thrun, S. (2009). Model based vehicle
detection and tracking for autonomous urban driving.
Autonomous Robots, 26(2-3):123–139.
Pitman, J. et al. (2002). Combinatorial stochastic processes.
Technical Report 621, Dept. Statistics, UC Berkeley,
2002. Lecture notes for St. Flour course.
Tuncer, M. A. C. and Schulz, D. (2015). Monte carlo based
distance dependent chinese restaurant process for seg-
mentation of 3d lidar data using motion and spatial
features. In Information Fusion (Fusion), 2015 18th
International Conference on, pages 112–118. IEEE.
Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R.,
Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer,
C., et al. (2008). Autonomous driving in urban envi-
ronments: Boss and the urban challenge. Journal of
Field Robotics, 25(8):425–466.
Integrated Object Segmentation and Tracking for 3D LIDAR Data
351