Figure 10: Sample virtual panoramic image obtained from
a virtual omnidirectional image in environment 1.
REFERENCES
Amor´os, F., Pay´a, L., Reinoso, O., and Valiente, D. (2014).
Towards relative altitude estimation in topological
navigation tasks using the global appearance of vi-
sual information. In VISAPP 2014, International Con-
ference on Computer Vision Theory and Applications,
volume 1, pages 194–201.
Andreasson, H. and Lilienthal, A. (2010). 6d scan regis-
tration using depth-interpolated local image features.
Robotics and Autonomous Systems, 58(2).
Bay, H., Tuytelaars, T., and Gool, L. (2006). Surf:
Speeded up robust features. Computer Vision at
ECCV, 3951:404–417.
Berenguer, Y., Pay´a, L., Ballesta, M., and Reinoso, O.
(2015). Position estimation and local mapping us-
ing omnidirectional images and global appearance de-
scriptors. Sensors, 15(10):26368.
Burbridge, C., Spacek, L., and Park, W. (2006). Omnidirec-
tional vision simulation and robot localisation. Pro-
ceedings of TAROS, 2006:32–39.
Lowe, D. (1999). Object recognition from local scale-
invariant features. In ICCV 1999, International Con-
ference on Computer Vision, volume 2, pages 1150–
1157.
Maohai, L., Han, W., Lining, S., and Zesu, C. (2013). Ro-
bust omnidirectional mobile robot topological naviga-
tion system using omnidirectional vision. Engineer-
ing Applications of Artificial Intelligence, 26(8):1942
– 1952.
Mondragon, I., Olivares-M´ended, M., Campoy, P.,
Mart´ınez, C., and Mejias, L. (2010). Unmanned aerial
vehicles uavs attitude, height, motion estimation and
control using visual systems. Autonomous Robots,
29:17–34.
Nene, S. and Nayar, S. (1998). Stereo with mirrors. In Pro-
ceedings of the 6th Internation Conference on Com-
puter Vision, Bombay, India.
Pay´a, L., Amor´os, F., Fern´andez, L., and Reinoso, O.
(2014). Performance of global-appearance descrip-
tors in map building and localization using omnidi-
rectional vision. Sensors, 14(2):3033–3064.
Pay´a, L., Fern´andez, L., Gil, L., and Reinoso, O. (2010).
Map building and monte carlo localization using
global appearance of omnidirectional images. Sen-
sors, 10(12):11468–11497.
Peasley, B. and Birchfield, S. (2015). Rgbd point cloud
alignment using lucas-kanade data association and au-
tomatic error metric selection. IEEE Transactions on
Robotics, 31(6):1548–1554.
Perazzi, F., Sorkine-Hornung, A., Zimmer, H., Kaufmann,
P., Wang, O., Watson, S., and Gross, M. (2015).
Panoramic video from unstructured camera arrays.
Computer Graphics Forum, 34(2):57–68.
Radon, J. (1917). Uber die bestimmung von funktio-
nen durch ihre integralwerte langs gewisser mannig-
faltigkeiten. Berichte Sachsische Akademie der Wis-
senschaften, 69(1):262–277.
Valiente, D., Gil, A., Fern´andez, L., and Reinoso, O. (2014).
A comparison of ekf and sgd applied to a view-based
slam approach with omnidirectional images. Robotics
and Autonomous Systems, 62(2):108 – 119.
Wang, X., Tang, J., Niu, J., and Zhao, X. (2016). Vision-
based two-step brake detection method for vehicle
collision avoidance. Neurocomputing, 173, Part 2:450
– 461.
Winters, N., Gaspar, J., Lacey, G., and Santos-Victor, J.
(2000). Omni-directional vision for robot navigation.
IEEE Workshop on Omnidirectional Vision, pages 21–
28.
Wu, J., Zhang, H., and Guan, Y. (2014). An efficient visual
loop closure detection method in a map of 20 million
key locations. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 861–866.
Zivkovic, Z. and Booij, O. (2006). How did we built our hy-
perbolic mirror omni-directional camera practical is-
sues and basic geometry. Intelligent Systems Labora-
tory Amsterdam, University of Amsterdam, IAS tech-
nical report IAS-UVA-05-04.