State Feedback Control Solutions for a Mechatronics System with Variable Moment of Inertia

Alexandra-Iulia Szedlak-Stinean, Radu-Emil Precup, Stefan Preitl, Emil M. Petriu, Claudia-Adina Bojan-Dragos

2016

Abstract

This paper presents details regarding the design of two state feedback control (SFC) solutions for the position control of a mechatronics application represented by the Model 220 Industrial Plant Emulator. Since SFC is not effective in terms of zero steady-state control error, the SFC structure of both solutions is inserted in a control loop that contains a PID controller with or without low-pass filter. This leads to the two SFC solutions proposed in this paper and dedicated to mechatronics applications with variable moment of inertia. The PID controllers are tuned by the Modulus Optimum method to ensure high control system performance expressed as increased phase margins and improved tracking performance. The performance of the proposed SFC solutions is illustrated by case studies that deal with experimentally identified parameters in two situations, rigid body dynamics and flexible drive dynamics. Simulation and experimental results obtained for the three significant values of the moment of inertia of the load disk are given.

References

  1. Åström, K. J., Hägglund, T., 1995. PID Controllers Theory: Design and Tuning. Research Triangle Park, NC: Instrument Society of America.
  2. Bandarabadi, M., Rasekhi, J., Teixeira, C. A., Netoff, T. I., Parhi, K. K., Dourado, A., 2015. Early seizure detection using neuronal potential similarity: a generalized lowcomplexity and robust measure. International Journal of Neural Systems. 25, 1-18.
  3. Bishop, R. H., 2007. The Mechatronics Handbook. Boca Raton, FL: CRC Press, 2nd edition.
  4. Blažic, S., Matko, D., Škrjanc, I., 2010. Adaptive law with a new leakage term. IET Control Theory & Applications. 4, 1533-1542.
  5. Casavola, A., Garone, E., Tedesco, F., 2014. Improved feedforward command governor strategies for constrained discrete-time linear systems. IEEE Transactions on Automatic Control. 59, 216-223.
  6. ECP (2010). Industrial Emulator/Servo Trainer Model 220 System, Testbed for Practical Control Training. Bell Canyon, CA: Educational Control Products.
  7. Gao, Z., Hu, S., Jiang, F., 2001. A novel motion control design approach based on active disturbance rejection. In Proceedings of 40th IEEE Conference on Decision and Control. Orlando, FL, USA, 5, 4877-4882.
  8. Gutiérrez-Carvajal, R. E., de Melo, L. F., Rosário, J. M., Tenreiro Machado, J. A., 2016. Condition-based diagnosis of mechatronic systems using a fractional calculus approach. International Journal of Systems Science. 47, 2169-2177.
  9. Isermann, R., 2005. Mechatronic Systems: Fundamentals. Berlin, Heidelberg, New York: Springer-Verlag.
  10. Johanyák, Z. C., 2015. A simple fuzzy logic based power control for a series hybrid electric vehicle. In Proceedings of 9th IEEE European Modelling Symposium on Mathematical Modelling and Computer Simulation. Madrid, Spain, 207-212.
  11. Menchaca-Mendez, A., Coello Coello, C. A., 2016. Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Information Sciences. 332, 131-152.
  12. Precup, R.-E., Dragos, C.-A., Preitl, S., Radac, M.-B., Petriu, E. M., 2012. Novel tensor product models for automatic transmission system control. IEEE Systems Journal. 6, 488-498.
  13. Precup, R.-E., Tomescu, M. L., Preitl, S., 2009. Fuzzy logic control system stability analysis based on Lyapunov's direct method. International Journal of Computers, Communication & Control. 4, 415-426.
  14. Ruano, A. E. B., Cabrita, C., Oliveira, J. V., Kóczy, L. T., 2002. Supervised training algorithms for B-Spline neural networks and neuro-fuzzy systems. International Journal of Systems Science. 33, 689-711.
  15. Saeki, M., Kishi, R., 2011. A data-driven PID control design by linear programming for stable plants. In Proceedings of 18th IFAC World Congress. Milano, Italy, 7420-7425.
  16. Stinean, A.-I., Bojan-Dragos, C.-A., Precup, R.-E., Preitl, S., Petriu, E. M., 2015. Takagi-Sugeno PD+I fuzzy control of processes with variable moment of inertia. In Proceedings of 2015 International Symposium on Innovations in Intelligent Systems and Applications. Madrid, Spain, 1-8.
  17. Stinean, A.-I., Preitl, S., Precup, R.-E., Dragos, C.-A., Radac, M.-B., Petriu, E. M., 2013a. Modeling and control of an electric drive system with continuously variable reference, moment of inertia and load disturbance. In Proceedings of 9th Asian Control Conference. Istanbul, Turkey, 1-6.
  18. Stinean, A.-I., Preitl, S., Precup, R.-E., Dragos, C.-A., Radac, M.-B., Petriu, E. M., 2013b. Low-cost neurofuzzy control solution for servo systems with variable parameters. In Proceedings of 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications. Milano, Italy, 156-161.
  19. Takamatsu, S., Wasiwitono, U., Saeki, M., Wada, N., 2010. Anti-windup compensator design considering behavior of controller state. In Proceedings of 2010 IEEE International Conference on Control Applications. Yokohoma, Japan, 1963-1968.
  20. Wang, W., Gao, Z., 2003. A comparison study of advanced state observer design techniques. In Proceedings of 2003 American Control Conference. Denver, CO, USA, 6, 4754-4759.
  21. Zheng, Q., Gao, L. Q., Gao, Z., 2012. On validation of extended state observer through analysis and experimentation. Journal of Dynamic Systems, Measurement, and Control. 134, 024505.1-024505.6.
Download


Paper Citation


in Harvard Style

Szedlak-Stinean A., Precup R., Preitl S., Petriu E. and Bojan-Dragos C. (2016). State Feedback Control Solutions for a Mechatronics System with Variable Moment of Inertia . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 458-465. DOI: 10.5220/0005988904580465


in Bibtex Style

@conference{icinco16,
author={Alexandra-Iulia Szedlak-Stinean and Radu-Emil Precup and Stefan Preitl and Emil M. Petriu and Claudia-Adina Bojan-Dragos},
title={State Feedback Control Solutions for a Mechatronics System with Variable Moment of Inertia},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={458-465},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005988904580465},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - State Feedback Control Solutions for a Mechatronics System with Variable Moment of Inertia
SN - 978-989-758-198-4
AU - Szedlak-Stinean A.
AU - Precup R.
AU - Preitl S.
AU - Petriu E.
AU - Bojan-Dragos C.
PY - 2016
SP - 458
EP - 465
DO - 10.5220/0005988904580465