gain bandwidth and high signal gain. Moreover, it is
very interesting that the chromatic dispersion can be
invariant to the fiber structure fluctuation and the
signal gain spectrum can be maintained.
ACKNOWLEDGEMENTS
This work is supported by MEXT, the Support
Program for Forming Strategic Research
Infrastructure (2011-2015)
REFERENCES
M. E. Marhic, 2008. Fiber optical parametric amplifiers,
oscillators and related devices, Cambridge University
Press.
P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A.
Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight
and F. G. Omenetto, 2008. Over 4000 nm Bandwidth of
Mid-IR Supercontinuum Generation in sub-centimeter
Segments of Highly Nonlinear Tellurite PCFs, Opt.
Express, 16, 7161-7168.
M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki and Y.
Ohishi, 2009. A highly non-linear tellurite
microstructure fiber with multi-ring holes for
supercontinuum generation, Opt. Express, 17, 15481-
15490.
C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A.
Zakel and J. Mauricio, 2009. 10.5 W time-averaged
power mid-IR supercontinuum generation extending
beyond 4 μm with direct pulse pattern modulation,
IEEE J. Sel. Top. Quantum Electron.,15, 422-434.
G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki
and Y. Ohishi, 2009. Ultrabroadband supercontinuum
generation from ultraviolet to 6.28 μm in a fluoride
fiber, Appl. Phys. Lett., 95, 161103.
Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J.
Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C.
Jules, D. Deng, Y. Ohishi and F. Smektala, 2014.
Multioctave midinfrared supercontinuum generation in
suspended-core chalcogenide fibers, Opt. Lett., 39,
2684-2687.
C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J.
Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z.
Tang, D. Furniss, A. Seddon and O. Bang, 2014. Mid-
infrared supercontinuum covering the 1.4–13.3 μm
molecular fingerprint region using ultra-high NA
chalcogenide step-index fibre, Nat. Photonics, 8, 830-
834.
H. T. Tong, T. Cheng, K. Asano, Z. Duan, W. Gao, D.
Deng, T. Suzuki, and Y. Ohishi, 2013. Optical
parametric gain and bandwidth in highly nonlinear
tellurite hybrid microstructured optical fiber with four
zero-dispersion wavelengths, Opt. Express 21, 17,
20303-20312.
J. Werner, 1968. Methods in High Precision Refractometry
of Optical Glasses, Appl. Optics, 7, (5), 837-843.
G. P. Agrawal, 2007. Nonlinear fiber optics, Amsterdam,
London, Elsevier/Academic Press.
J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O.
Hedekvist, 2002. Fiber-based optical parametric
amplifiers and their applications, IEEE J. Sel. Top.
Quant., 8, 506-520.
T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T.
Misumi, T. Suzuki, and Y. Ohishi, 2014. Fabrication
and characterization of a hybrid four-hole AsSe
2
-As
2
S
5
microstructured optical fiber with a large refractive
index difference, Opt. Express, 22, 13322-13329.
S. P. Singh, S. K. Varshney, and P. K. Datta, 2012. Optical
Parametric Amplification in Chalcogenide Step Index
Fiber over Infrared Region, International Conference
on Fibre Optics and Photonics, OSA Technical Digest
(online) (Optical Society of America, 2012), paper
WPo.12.
Optical Parametric Amplification Performance in AsSe2-based Hybrid Microstructured Optical Fibers