Fatikow, S. and Rembold, U. (1997). Microsystem technol-
ogy and microrobotics. Springer-Verlag.
Hirose, S. (1993). Biologically Inspired Robots: Snake-
like Locomotors and Manipulators. Oxford University
Press, Oxford, 3rd edition.
Kubota, T., Nagaoka, K., Tanaka, S., and Nakamura, T.
(2007). Earth-worm typed drilling robot for subsur-
face planetary exploration. IEEE International Con-
ference on Robotics and Biomimetics, pages 1394–
1399.
Liu, W., Menciassi, A., Scapellato, S., Dario, P., and
Chen, Y. (2006). A biomimetic sensor for a crawl-
ing minirobot. Robotics and Autonomous Systems,
54:513–528.
Meier, P., Dietrich, J., Oberth¨ur, S., Preuß, R., Voges, D.,
and Zimmermann, K. (2004). Development of a peri-
staltically actuated device for the minimal invasive
surgery with a haptic sensor array. Micro- and Nanos-
tructures of Biological Systems, pages 66–89.
Merz, R. A. and Edwards, D. R. (1998). Jointed setae - their
role in locomotion and gait transitions in polychaete
worms. Journal of Experimental Marine Biology and
Ecology, 228:273–290.
Miller, G. (1988). The motion dynamics of snakes and
worms. Computer Graphics, 22:169–173.
Nakamura, T., Kato, T., Iwanaga, T., and Muranaka, Y.
(2006). Peristaltic crawling robot based on the lo-
comotion mechanism of earthworms. Proceedings
4th IFACSympos on Mechatronic Systems, pages 513–
528.
Ostrowski, J. and Burdick, J. (1996). Gait kinematics for a
serpentine robot. Proc. IEEE Int. Conf. Robotics and
Autom.
Otterbach, J. (2016). Entwicklung von kaskadierten
Lokomotionssystemen und Implementierung von
Reglungsalgorithmen (Development of cascaded lo-
comotion systems and implementation of control al-
gorithms). Master Thesis, Dept. of Mechanical Engi-
neering, TU Ilmenau, Germany.
Schwebke, S. (2012). Contributions to adaptive control
strategies of biomimetic, worm-like locomotion sys-
tems and their use for gait shifting. Bachelor Thesis,
Dept. of Mechanical Engineering, TU Ilmenau, Ger-
many.
Schwebke, S. and Behn, C. (2013). Worm-like robotic
systems: Generation, analysis and shift of gaits us-
ing adaptive control. Artificial Intelligence Research
(AIR), 2:12–35.
Slatkin, A., Burdick, J., and Grundfest, W. (1995). The
development of a robotic endoscope. Proc. Int. Conf.
Intell. Robots and Systems, 2.
Steigenberger, J. and Behn, C. (2011). Gait generation
considering dynamics for artificial segmented worms.
Robotics and Autonomous Systems, 59:555–562.
Steigenberger, J. and Behn, C. (2012). Worm-like locomo-
tion systems: an intermediate theoretical approach.
Oldenbourg Verlag.
Vaidyanathan, R., Chiel, H., and Quinn, R. (2000). A hy-
drostatic robot for marine applications. Robotics and
Autonomous Systems, 30:103–113.
Ye, X. (1999). Universal λ-tracking for nonlinearly-
perturbed systems without restrictions on the relative
degree. Automatica, 35:109–119.
Zimmermann, K., Zeidis, I., and Behn, C. (2009). Mechan-
ics of Terrestrial Locomotion - With a Focus on Non-
pedal Motion Systems. Springer, Berlin.