(a) Original shape
(b) Deformation shape
Figure 11: Deformation test of an MRS with 37 PRP struts.
Then, a CPG based control method is implemented
for verifying the performance of the proposed MRSs.
Comparative simulation results demonstrate the effi-
cacy of the control method and the proposed MRSs
as compared with conventional MRSs. Note that, by
using rigid nodes, the difficulty of implementing ideal
compliant nodes has been avoided, thus simplifying
the mechanical design process. Future work will fo-
cus on investigating useful deformation of the MRSs,
designing and building the proposed MRSs, and veri-
fying the control method using physical MRSs.
REFERENCES
Baca, J., Hossain, S. G. M., Dasgupta, P., Nelson, C. A.,
and Dutta, A. (2014). ModRED: Hardware de-
sign and reconfiguration planning for a high dex-
terity modular self-reconfigurable robot for extra-
terrestrial exploration. Robotics and Autonomous Sys-
tems, 62(7):1002–1015.
Cheng, N., Ishigami, G., Hawthorne, S., Chen, H., Hansen,
M., Telleria, M., Playter, R., and Iagnemma, K.
(2010). Design and analysis of a soft mobile
robot composed of multiple thermally activated joints
driven by a single actuator. In Proceedings of the
IEEE International Conference on Robotics and Au-
tomation, pages 5207–5212.
Curtis, S., Brandt, M., Bowers, G., Brown, G., Cheung,
C., Cooperider, C., Desch, M., Desch, N., Dorband,
J., Gregory, K., Lee, K., Lunsford, A., Minetto, F.,
Truszkowski, W., Wesenberg, R., Vranish, J., Abra-
hantes, M., Clark, P., Capon, T., Weaker, M., Watson,
R., Olivier, P., and Rilee, M. L. (2007). Tetrahedral
robotics for space exploration. In Proceedings of the
IEEE Aerospace Conference, pages 1–9.
Hamlin, G. J. and Sanderson, A. C. (1998). TETROBOT:
A Modular Approach to Reconfigurable Parallel
Robotics. Springer, New York.
Kurokawa, H., Yoshida, E., Tomita, K., Kamimura, A., Mu-
rata, S., and Kokaji, S. (2006). Self-reconfigurable M-
TRAN structures and walker generation. Robotics and
Autonomous Systems, 54(2):142–149.
Lyder, A. (2010). Towards Versatile Robots Through Open
Heterogeneous Modular Robots. PhD thesis, Univer-
sity of Southern Denmark.
Østergaard, E. H., Kassow, K., Beck, R., and Lund, H. H.
(2006). Design of the ATRON lattice-based self-
reconfigurable robot. Autonomous Robots, 21(2):165–
183.
Ramchurn, V., Richardson, R. C., and Nutter, P. (2006).
ORTHO-BOT: A modular reconfigurable space robot
concept. In Tokhi, M., Virk, G., and Hossain, M., ed-
itors, Climbing and Walking Robots, pages 659–666.
Springer, Berlin Heidelberg.
Salemi, B., Moll, M., and Shen, W.-M. (2006). SUPER-
BOT: A deployable, multi-functional, and modular
self-reconfigurable robotic system. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3636–3641.
Sato, T., Kano, T., and Ishiguro, A. (2011). On the ap-
plicability of the decentralized control mechanism ex-
tracted from the true slime mold: a robotic case study
with a serpentine robot. Bioinspiration and Biomimet-
ics, 6(2):026006.
Spr¨owitz, A., Moeckel, R., Vespignani, M., Bonardi, S.,
and Ijspeert, A. J. (2014). Roombots: A hardware
perspective on 3D self-reconfiguration and locomo-
tion with a homogeneous modular robot. Robotics and
Autonomous Systems, 62(7):1016–1033.
Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll,
M., Lipson, H., Klavins, E., and Chirikjian, G. S.
(2007). Modular self-reconfigurable robot systems
[grand challenges of robotics]. IEEE Robotics Au-
tomation Magazine, 14(1):43–52.
Yu, C.-H. (2010). Biologically-Inspired Control for Self-
Adaptive Multiagent Systems. PhD thesis, Harvard
University.
Zagal, J. C., Armstrong, C., and Li, S. (2012). Deformable
octahedron burrowing robot. In Adami, C., Bryson,
D. M., Ofria, C., and Pennock, R. T., editors, Artificial
Life 13, pages 431–438. MIT Press, Cambridge.
Zhang, Y., Yim, M., Eldershaw, C., Duff, D., and Roufas,
K. (2003). Scalable and reconfigurable configurations
and locomotion gaits for chain-type modular recon-
figurable robots. In Proceedings of the IEEE Inter-
national Symposium on Computational Intelligence in
Robotics and Automation, pages 893–899.