Prospective: In the future works we plan to im-
prove our target tracking systems from different per-
spective. We plan to employ more advanced tech-
niques in estimating the trajectory of the hidden tar-
get, instead of the straight line trajectory assumption.
In addition we will integrate a mutation based trajec-
tory bifurcation to expand the hypothesis over a trel-
lis to account for the possible radical changes in the
trajectory of the target. Furthermore we plan to im-
plement a more comprehensive system, composed of
different sensory modalities, so that the data associa-
tion could benefit from visual cues. The continuation
of this work will be evaluated over more experimental
results, that we plan to carry out in a real warehouse
environment.
REFERENCES
Almeida, A., Almeida, J., and Ara
´
ujo, R. (2005). Real-
time tracking of multiple moving objects using par-
ticle filters and probabilistic data association. AU-
TOMATIKA:
ˇ
casopis za automatiku, mjerenje, elek-
troniku, ra
ˇ
cunarstvo i komunikacije, 46(1-2):39–48.
Arras, K. O., Grzonka, S., Luber, M., and Burgard, W.
(2008). Efficient people tracking in laser range data
using a multi-hypothesis leg-tracker with adaptive oc-
clusion probabilities. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on,
pages 1710–1715. IEEE.
Arras, K. O. and Mozos, O. M. (2009). People detection
and tracking.
Arras, K. O., Mozos,
´
O. M., and Burgard, W. (2007). Us-
ing boosted features for the detection of people in
2D range data. In Robotics and Automation, 2007
IEEE International Conference on, pages 3402–3407.
IEEE.
Br
¨
aunl, T. (2008). Embedded robotics: mobile robot design
and applications with embedded systems. Springer
Science & Business Media.
Carballo, A., Ohya, A., and Yuta, S. (2009). Multiple peo-
ple detection from a mobile robot using double lay-
ered laser range finders. In ICRA Workshop.
Castro, D., Nunes, U., and Ruano, A. (2004). Feature ex-
traction for moving objects tracking system in indoor
environments. In Proc. 5th IFAC/euron Symposium on
Intelligent Autonomous Vehicles. Citeseer.
Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-
based object tracking. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 25(5):564–577.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 886–
893. IEEE.
Fod, A., Howard, A., and Mataric, M. J. (2002). A
laser-based people tracker. In Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International
Conference on, volume 3, pages 3024–3029. IEEE.
Grewal, M. S. and Andrews, A. P. Kalman filtering: theory
and practice, 1993.
Isard, M. and Blake, A. (1998). Condensationconditional
density propagation for visual tracking. International
journal of computer vision, 29(1):5–28.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of basic Engineer-
ing, 82(1):35–45.
Kmiotek, P. and Ruichek, Y. (2008). Representing and
tracking of dynamics objects using oriented bound-
ing box and extended kalman filter. In Intelligent
Transportation Systems, 2008. ITSC 2008. 11th Inter-
national IEEE Conference on, pages 322–328. IEEE.
Le Roux, J. (1960). An introduction to kalman filtering:
Probabilistic and deterministic approaches. ASME J.
Basic Engineering, 82:34–45.
Leigh, A., Pineau, J., Olmedo, N., and Zhang, H. (2015).
Person tracking and following with 2D laser scanners.
In Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on, pages 726–733. IEEE.
Linder, T. and Arras, K. O. (2016). People detection, track-
ing and visualization using ROS on a mobile service
robot. In Robot Operating System (ROS), pages 187–
213. Springer.
Lovas, T. and Barsi, A. (2015). Pedestrian detection by pro-
file laser scanning. In Models and Technologies for
Intelligent Transportation Systems (MT-ITS), 2015 In-
ternational Conference on, pages 408–412. IEEE.
Lucas, B. D., Kanade, T., et al. (1981). An iterative image
registration technique with an application to stereo vi-
sion. In IJCAI, volume 81, pages 674–679.
Mozos, O. M., Kurazume, R., and Hasegawa, T. (2010).
Multi-part people detection using 2D range data. In-
ternational Journal of Social Robotics, 2(1):31–40.
Nemati, H. and
˚
Astrand, B. (2014). Tracking of people
in paper mill warehouse using laser range sensor. In
Modelling Symposium (EMS), 2014 European, pages
52–57. IEEE.
Papageorgiou, C. and Poggio, T. (2000). A trainable system
for object detection. International Journal of Com-
puter Vision, 38(1):15–33.
Premebida, C. and Nunes, U. (2005). Segmentation and ge-
ometric primitives extraction from 2D laser range data
for mobile robot applications. Robotica, 2005:17–25.
Rebai, K., Benabderrahmane, A., Azouaoui, O., and
Ouadah, N. (2009). Moving obstacles detection
and tracking with laser range finder. In Advanced
Robotics, 2009. ICAR 2009. International Conference
on, pages 1–6. IEEE.
Schiele, B., Andriluka, M., Majer, N., Roth, S., and Wojek,
C. (2009). Visual people detection: Different mod-
els, comparison and discussion. In IEEE International
Conference on Robotics and Automation.
Schulz, D., Burgard, W., Fox, D., and Cremers, A. B.
(2001). Tracking multiple moving targets with a mo-
bile robot using particle filters and statistical data as-
sociation. In Robotics and Automation, 2001. Pro-
Human Tracking in Occlusion based on Reappearance Event Estimation
511