considered as an objective for further optimization
algorithm enhancement.
ACKNOWLEDGEMENTS
This research has been supported by Russian Ministry
of Education and Science as a part of Scientific and
Technological Research and Development Program
of Russian Federation for 2014-2020 years (research
grant ID RFMEFI60914X0004) and by Android
Technics company, the industrial partner of the
research.
REFERENCES
Akhtaruzzaman, M. & Shafie, A. A. (2010) Evolution of
Humanoid Robot and contribution of various countries
in advancing the research and development of the
platform. Control Automation and Systems (ICCAS),
2010 International Conference on.
Channon, P., Hopkins, S. & Pham, D. (1992) Derivation of
optimal walking motions for a bipedal walking robot.
Robotica, 10 (02), 165-172.
Collins, S., Ruina, A., Tedrake, R. & Wisse, M. (2005)
Efficient Bipedal Robots Based on Passive-Dynamic
Walkers. Science, 307 (5712), 1082-1085.
Collins, S. H., Wisse, M. & Ruina, A. (2001) A three-
dimensional passive-dynamic walking robot with two
legs and knees. The International Journal of Robotics
Research, 20 (7), 607-615.
Erbatur, K. & Kurt, O. (2009) Natural ZMP Trajectories for
Biped Robot Reference Generation. IEEE Transactions
on Industrial Electronics, 56 (3), 835-845.
Escande, A., Kheddar, A. & Miossec, S. (2013) Planning
contact points for humanoid robots. Robotics and
Autonomous Systems, 61 (5), 428-442.
Gabbasov, B., Danilov, I., Afanasyev, I. & Magid, E.
(2015) Toward a human-like biped robot gait:
Biomechanical analysis of human locomotion recorded
by Kinect-based Motion Capture system. Mechatronics
and its Applications (ISMA), 2015 10th International
Symposium on.
Goswami, A. (1999) Postural Stability of Biped Robots and
the Foot-Rotation Indicator (FRI) Point. The
International Journal of Robotics Research, 18 (6),
523-533.
Ha, T. & Choi, C.-H. (2007) An effective trajectory
generation method for bipedal walking. Robotics and
Autonomous Systems, 55 (10), 795-810.
Hera, P. X. M. L., Shiriaev, A. S., Freidovich, L. B., Mettin,
U. & Gusev, S. V. (2013) Stable Walking Gaits for a
Three-Link Planar Biped Robot With One Actuator.
IEEE Transactions on Robotics, 29 (3), 589-601.
Hofmann, A., Popovic, M. & Herr, H. (2009) Exploiting
angular momentum to enhance bipedal center-of-mass
control. Robotics and Automation, 2009. ICRA '09.
IEEE International Conference on.
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada,
K., Yokoi, K. & Hirukawa, H. (2003) Biped walking
pattern generation by using preview control of zero-
moment point. Robotics and Automation, 2003.
Proceedings. ICRA '03. IEEE International Conference
on.
Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K. & Hirukawa,
H. (2001) The 3D linear inverted pendulum mode: a
simple modeling for a biped walking pattern generation.
Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on.
Katić, D. & Vukobratović, M. (2003) Survey of Intelligent
Control Techniques for Humanoid Robots. Journal of
Intelligent and Robotic Systems, 37 (2), 117-141.
Khusainov, R., Afanasyev, I. & Magid, E. (2016a)
Anthropomorphic robot modelling with virtual height
inverted pendulum approach in Simulink: step length
and period influence on walking stability. The 2016
International Conference on Artificial Life and
Robotics (ICAROB 2016). Japan.
Khusainov, R., Sagitov, A., Afanasyev, I. & Magid, E.
(2016b) Bipedal robot locomotion modelling with
virtual height inverted pendulum in Matlab-Simulink
and ROS-Gazebo environments. Journal of Robotics,
Networking and Artificial Life, 3 (1).
Khusainov, R., Shimchik, I., Afanasyev, I. & Magid, E.
(2015) Toward a human-like locomotion: Modelling
dynamically stable locomotion of an anthropomorphic
robot in simulink environment. Informatics in Control,
Automation and Robotics (ICINCO), 2015 12th
International Conference on.
Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S. &
Furet, B. (2014a) Compliance Error Compensation in
Robotic-Based Milling. In Ferrier, J.-L., Bernard, A.,
Gusikhin, O. & Madani, K. (Eds.) Informatics in
Control, Automation and Robotics: 9th International
Conference, ICINCO 2012 Rome, Italy, July 28-31,
2012 Revised Selected Papers. Cham, Springer
International Publishing.
Klimchik, A., Chablat, D. & Pashkevich, A. (2014b)
Stiffness modeling for perfect and non-perfect parallel
manipulators under internal and external loadings.
Mechanism and Machine Theory, 79, 1-28.
Klimchik, A., Furet, B., Caro, S. & Pashkevich, A. (2015)
Identification of the manipulator stiffness model
parameters in industrial environment. Mechanism and
Machine Theory, 90, 1-22.
Klimchik, A., Pashkevich, A., Caro, S. & Chablat, D.
(2012) Stiffness Matrix of Manipulators With Passive
Joints: Computational Aspects. IEEE Transactions on
Robotics, 28 (4), 955-958.
Klimchik, A., Pashkevich, A., Chablat, D. & Hovland, G.
(2013) Compliance error compensation technique for
parallel robots composed of non-perfect serial chains.
Robotics and Computer-Integrated Manufacturing, 29
(2), 385-393.
Majima, K., Miyazaki, T. & Ohishi, K. (1999) Dynamic
gait control of biped robot based on kinematics and