human-generated ground truth. The Visual Computer,
28(9):901–917.
Filipe, S. and Alexandre, L. A. (2013). A comparative eval-
uation of 3d keypoint detectors. In 9th Conference on
Telecommunications, Conftele 2013, pages 145–148,
Castelo Branco, Portugal.
Frome, A., Huber, D., Kolluri, R., Bulow, T., and Malik,
J. (2004). Recognizing objects in range data using
regional point descriptors. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV).
Guo, Y., Bennamoun, M., Sohel, F., Lu, M., and Wan,
J. (2014). 3d object recognition in cluttered scenes
with local surface features: A survey. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
36(11):2270–2287.
Heider, P., Pierre-Pierre, A., Li, R., and Grimm, C. (2011).
Local shape descriptors, a survey and evaluation. In
Proceedings of the 4th Eurographics conference on
3D Object Retrieval, pages 49–56. Eurographics As-
sociation.
Johnson, A. and Hebert, M. (1999). Using spin images for
efficient object recognition in cluttered 3d scenes. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 21(5):433–449.
Johnson, A. E. and Hebert, M. (1998). Surface matching
for object recognition in complex three-dimensional
scenes. Image and Vision Computing, 16(9):635–651.
Kim, H. and Hilton, A. (2013). Evaluation of 3d feature de-
scriptors for multi-modal data registration. In 2013 In-
ternational Conference on 3D Vision, 3DV 2013, Seat-
tle, Washington, USA, June 29 - July 1, 2013, pages
119–126.
Knopp, J., Prasad, M., Willems, G., Timofte, R., and
Van Gool, L. (2010). Hough transform and 3d surf for
robust three dimensional classification. In Computer
Vision–ECCV 2010, pages 589–602. Springer.
Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A large-
scale hierarchical multi-view rgb-d object dataset. In
Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 1817–1824. IEEE.
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J.,
Kawamura, S., Kurita, Y., Lavou
´
e, G., Van Nguyen,
H., Ohbuchi, R., et al. (2011). Shrec’11 track: Shape
retrieval on non-rigid 3d watertight meshes. 3DOR,
11:79–88.
Madry, M., Afkham, H. M., Ek, C. H., Carlsson, S., and
Kragic, D. (2013). Extracting essential local object
characteristics for 3d object categorization. In Intelli-
gent Robots and Systems (IROS), 2013 IEEE/RSJ In-
ternational Conference on, pages 2240–2247. IEEE.
Madry, M., Ek, C. H., Detry, R., Hang, K., and Kragic, D.
(2012). Improving generalization for 3d object cate-
gorization with global structure histograms. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ In-
ternational Conference on, pages 1379–1386. IEEE.
Rusu, R., Blodow, N., and Beetz, M. (2009). Fast point fea-
ture histograms (fpfh) for 3d registration. In Robotics
and Automation, 2009. ICRA ’09. IEEE International
Conference on, pages 3212–3217.
Rusu, R. B. (2010). Semantic 3d object maps for every-
day manipulation in human living environments. KI-
K
¨
unstliche Intelligenz, 24(4):345–348.
Rusu, R. B., Blodow, N., Marton, Z. C., and Beetz, M.
(2008a). Aligning point cloud views using persistent
feature histograms. In Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference
on, pages 3384–3391. IEEE.
Rusu, R. B., Marton, Z. C., Blodow, N., and Beetz, M.
(2008b). Learning informative point classes for the
acquisition of object model maps. In Control, Automa-
tion, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on, pages 643–650. IEEE.
Salti, S., Tombari, F., and Stefano, L. D. (2011). A per-
formance evaluation of 3d keypoint detectors. In
3D Imaging, Modeling, Processing, Visualization and
Transmission (3DIMPVT), 2011 International Con-
ference on, pages 236–243. IEEE.
Salti, S., Tombari, F., and Stefano, L. D. (2014). Shot:
Unique signatures of histograms for surface and tex-
ture description. Computer Vision and Image Under-
standing, 125(0):251 – 264.
Seib, V., Christ-Friedmann, S., Thierfelder, S., and Paulus,
D. (2013). Object class and instance recognition on
rgb-d data. In Sixth International Conference on Ma-
chine Vision (ICMV 13), pages 90670J–90670J. Inter-
national Society for Optics and Photonics.
Tang, S. and Godil, A. (2012). An evaluation of lo-
cal shape descriptors for 3d shape retrieval. CoRR,
abs/1202.2368.
Toldo, R., Castellani, U., and Fusiello, A. (2009). A bag of
words approach for 3d object categorization. In Com-
puter Vision/Computer Graphics CollaborationTech-
niques, pages 116–127. Springer.
Toldo, R., Castellani, U., and Fusiello, A. (2010). The bag
of words approach for retrieval and categorization of
3d objects. The Visual Computer, 26(10):1257–1268.
Tombari, F., Salti, S., and Di Stefano, L. (2010a). Unique
shape context for 3d data description. In Proceedings
of the ACM workshop on 3D object retrieval, pages
57–62. ACM.
Tombari, F., Salti, S., and Di Stefano, L. (2010b). Unique
signatures of histograms for local surface descrip-
tion. In Computer Vision–ECCV 2010, pages 356–
369. Springer.
Wu, C.-C. and Lin, S.-F. (2011). Efficient model detection
in point cloud data based on bag of words classifica-
tion. Journal of Computational Information Systems,
7(12):4170–4177.
Yi, Y., Guang, Y., Hao, Z., Meng-Yin, F., and Mei-ling,
W. (2014). Object segmentation and recognition in 3d
point cloud with language model. In Multisensor Fu-
sion and Information Integration for Intelligent Sys-
tems (MFI), 2014 International Conference on, pages
1–6. IEEE.
Zhong, Y. (2009). Intrinsic shape signatures: A shape de-
scriptor for 3d object recognition. In Computer Vision
Workshops (ICCV Workshops), 2009 IEEE 12th Inter-
national Conference on, pages 689–696. IEEE.
Evaluation of Local 3-D Point Cloud Descriptors in Terms of Suitability for Object Classification
547