acceleration capability of underactuated mechanical
systems. We highlighted the importance of the effects
of the nonlinear inertial forces on the acceleration
limits of underactuated system.
A perspective of this work, is to extend the cur-
rent analysis to floating-base systems, a special class
under actuated mechanical systems driven by the in-
teraction with the environment as well as the dynamic
coupling of its articulating system.
REFERENCES
Arai, H., Tanie, K., and Shiroma, N. (1998). Nonholonomic
control of a three-DOF planar underactuated manipu-
lator. IEEE Trans. Robot. Autom., 14(5):681–695.
˚
Astr¨om, K. J. and Furuta, K. (2000). Swinging up a pendu-
lum by energy control. Automatica, 36(2):287–295.
Betts, J. T. (1998). Survey of Numerical Methods for
Trajectory Optimization. J. Guid. Control. Dyn.,
21(2):193–207.
Betts, J. T. (2010). Practical Methods for Optimal Control
and Estimation Using Nonlinear Programming.
Gill, P. E., Murray, W., and Saunders, M. A. (2002).
SNOPT: An SQP Algorithm for Large-Scale Con-
strained Optimization. SIAM J. Optim., 12(4):979–
1006.
Hauser, J. and Murray, R. M. (1990). Nonlinear con-
trollers for non-integrable systems: the Acrobot ex-
ample. 1990 Am. Control Conf., (1):669–671.
Hauser, K. (2014). Fast interpolation and time-optimization
with contact. Int. J. Rob. Res., 33(9):1231–1250.
Ibuki, T., Sampei, M., Ishikawa, A., and Nakaura, S.
(2015). Jumping Motion Control for 4-Link Robot
Based on Virtual Constraint on Underactuated Joint.
Sc.Ctrl.Titech.Ac.Jp, pages 1–6.
Kolda, T. G. and Bader, B. W. (2008). Tensor Decomposi-
tions and Applications. SIAM Rev., 51(3):455–500.
Kurazume, R. and Hasegawa, T. (2002). A new index of se-
rial link manipulator performance combining dynamic
manipulability and manipulating force ellisoids. 1(8).
Lam, S. and Davison, E. (2006). The real stabilizability ra-
dius of the multi-link inverted pendulum. Am. Control
Conf. 2006, (2):1814–1819.
Libby, T., Moore, T. Y., Chang-Siu, E., Li, D., Cohen,
D. J., Jusufi, A., and Full, R. J. (2012). Tail-assisted
pitch control in lizards, robots and dinosaurs. Nature,
481(7380):181–184.
Luca, A. D. and Oriolo, G. (2002). Trajectory Planning and
Control for Planar Robots with Passive Last Joint. Int.
J. Rob. Res., 21(5-6):575–590.
Lynch, K. and Mason, M. (1996). Dynamic underactu-
ated nonprehensile manipulation. Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst. IROS ’96, 2:889–896.
Nagarajan, U., Kantor, G., and Hollis, R. (2013). Integrated
motion planning and control for graceful balancing
mobile robots. Int. J. Rob. Res., 32(9-10):1005–1029.
Olfati-Saber, R. (2001). Nonlinear Control of Under-
actuated Mechanical Systems with Application to
Robotics and Aerospace Vehicles. page 307.
Patel, A. and Braae, M. (2013). Rapid turning at high-
speed: Inspirations from the cheetah’s tail. IEEE Int.
Conf. Intell. Robot. Syst., pages 5506–5511.
Posa, M., Cantu, C., and Tedrake, R. (2013). A direct
method for trajectory optimization of rigid bodies
through contact. Int. J. Rob. Res., 33(1):69–81.
Shkolnik, A. and Tedrake, R. (2008). High-dimensional un-
deractuated motion planning via task space control.
2008 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS,
pages 3762–3768.
Spong, M. W. (1995). Swing up control problem for the
acrobot. IEEE Control Syst. Mag., 15(1):49–55.
Spong, M. W. (1998). Underactuated mechanical systems.
Control Probl. Robot. Autom. Springer, pages 135–
150.
Tamegaya, K., Kanamiya, Y., Nagao, M., and Sato, D.
(2008). Inertia-coupling based balance control of a
humanoid robot on unstable ground. 2008 8th IEEE-
RAS Int. Conf. Humanoid Robot. Humanoids 2008,
pages 151–156.
Tedrake, R. (2014). Drake: A planning, control, and analy-
sis toolbox for nonlinear dynamical systems.
Todorov, E. (2004). Optimality principles in sensorimotor
control. Nat. Neurosci., 7(9):907–15.
Wachter, A. and Biegler, L. T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming, volume 106.
Wieber, P.-B. (2005). Some comments on the structure of
the dynamics of articulated motion. Ruperto Carola
Symp. Fast Motions Biomech. Robot.
Wieber Pierre-Brice, Tedrake Russ, K. S. (2015). Model-
ing and Control of Legged Robots. Springer, 2nd ed
edition.
Xin, X. (2013). On simultaneous control of the energy
and actuated variables of underactuated mechanical
systems-example of the acrobot with counterweight.
Adv. Robot., 27(12):959–969.
Xin, X. and Kaneda, M. (2007a). Analysis of the energy-
based swing-up control of the Acrobot. Int. J. Robust
Nonlinear Control, 17(16):1503–1524.
Xin, X. and Kaneda, M. (2007b). Design and analysis of
swing-up control for a 3-link gymnastic robot with
passive first joint. Proc. IEEE Conf. Decis. Control,
23(6):1923–1928.