Table 2: AuC (Flow).
Method Label AuC
Euclidean distance all 0.546382
Euclidean distance fn 2 detector 0.546917
Euclidean distance fn 3 detector 0.546582
Euclidean distance fn 4 detector 0.570564
Euclidean distance fn attack 0.520335
Euclidean distance fn attack special 0.481449
Euclidean distance fn unknown 0.57054
Euclidean distance fn unknown 4 detector 0.590988
KL all 0.494823
KL fn 2 detector 0.494804
KL fn 3 detector 0.4943
KL fn 4 detector 0.491971
KL fn attack 0.51984
KL fn attack special 0.513451
KL fn unknown 0.488019
KL fn unknown 4 detector 0.495547
JS all 0.505141
JS fn 2 detector 0.505257
JS fn 3 detector 0.505373
JS fn 4 detector 0.505256
JS fn attack 0.515206
JS fn attack special 0.499154
JS fn unknown 0.507279
JS fn unknown 4 detector 0.511053
result highlights that the choice of a proper traffic de-
scriptor is a key factor in anomaly detection.
ACKNOWLEDGEMENTS
This work was partially supported by PRA 2016 re-
search project 5GIOTTO funded by the University of
Pisa and by SCOUT, a research project supported by
the European Commission under its 7th Framework
Program (contract-no. 607019). The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing
the official policies or endorsements, either expressed
or implied, of the SCOUT project or the European
Commission.
REFERENCES
Flow-Tools Home Page. http://www.ietf.org/rfc/rfc39
54.txt.
MAWI Working Group Traffic Archive. http://mawi.wi
de.ad.jp/mawi (accessed on November 2011).
MAWILab. http://www.fukuda-lab.org/mawilab/ (accessed
on November 2011).
Borgnat, P., Dewaele, G., Fukuda, K., Abry, P., and Cho,
K. (2009). Seven years and one day: Sketching the
evolution of internet traffic. In INFOCOM.
Brauckhoff, D., Dimitropoulos, X., Wagner, A., and Sala-
matian, K. (2012). Anomaly extraction in backbone
networks using association rules. IEEE/ACM Trans.
Netw., 20(6):1788–1799.
Callegari, C., Casella, A., Giordano, S., Pagano, M., and
Pepe, T. (2013a). Sketch-based multidimensional
IDS: A new approach for network anomaly detection.
In IEEE Conference on Communications and Network
Security, CNS 2013, National Harbor, MD, USA, Oc-
tober 14-16, 2013, pages 350–358.
Callegari, C., Coluccia, A., D’Alconzo, A., Ellens, W.,
Giordano, S., Mandjes, M., Pagano, M., Pepe, T., Ric-
ciato, F., and Zuraniewski, P. (2013b). A methodolog-
ical overview on anomaly detection. In Data Traf-
fic Monitoring and Analysis, pages 148–183. Springer
Berlin Heidelberg.
Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M.,
and Pepe, T. (2010a). When randomness improves
the anomaly detection performance. In Proceedings
of 3rd International Symposium on Applied Sciences
in Biomedical and Communication Technologies (IS-
ABEL).
Callegari, C., Giordano, S., Pagano, M., and Pepe, T.
(2010b). On the use of sketches and wavelet anal-
ysis for network anomaly detection. In IWCMC ’10:
Proceedings of the 6th International Wireless Commu-
nications and Mobile Computing Conference, pages
331–335, New York, NY, USA. ACM.
Callegari, C., Giordano, S., Pagano, M., and Pepe, T.
(2011). Forecasting the Distribution of Network Traf-
fic for Anomlay Detection. In TRUSTCOM ’11 Pro-
ceedings of the 2011 IEEE 10th International Confer-
ence on Trust, Security and Privacy in Computing and
Communications, pages 173–180.
Claise, B. (2004). Cisco Systems NetFlow Services Export
Version 9. RFC 3954 (Informational).
Cormode, G. and Muthukrishnan, S. (2005). An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58 – 75.
Dewaele, G., Fukuda, K., Borgnat, P., Abry, P., and Cho,
K. (2007). Extracting hidden anomalies using sketch
and non gaussian multiresolution statistical detection
procedures. In LSAD ’07: Proceedings of the 2007
workshop on Large scale attack defense, pages 145–
152, New York, NY, USA. ACM.
Fontugne, R., Borgnat, P., Abry, P., and Fukuda, K. (2010).
MAWILab: Combining Diverse Anomaly Detectors
for Automated Anomaly Labeling and Performance
Benchmarking. ACM CoNEXT.
Kind, A., Stoecklin, M. P., and Dimitropoulos, X. (2009).
Histogram-Based Traffic Anomaly Detection. IEEE
Transactions on Network and Service Management,
6(2).
Kolmogorov, A. and Fomin, S. (1999). Elements of the The-
ory of Functions and Functional Analysis. Number v.
1 in Dover books on mathematics. Dover.
Kullback, S. and Leibler, R. A. (1951). On information and
sufficiency. Ann. Math. Statist., 22(1):79–86.