tions for greenhouse gas emissions in 2030? Centre
for Climate Change Economics and Policy.
CI (2015). United N climate pledge analy-
sis. Climate Interactive. Available at:
www.climateinteractive.org.programs/scoreboard/.
Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S.,
and Tavoni, M. (2009). International climate policy
architectures: Overview of the emf 22 international
scenarios. Energy Economics (Supplement 2), pages
S64–S81.
Davis, S., Caldeira, K., and Matthews, H. (2010). Future
co2 emissions ans climate change from existing en-
ergy infraestructure. Science, 329(5997):1330–1333.
DEA (2015). Analyzing the 2030 emissions gap. Danish
Energy Agency.
den Elzen, M., Meinshausen, M., and van Vuuren, D.
(2010). Multi-gas emission envelopes to meet green-
house gas concentration targets: Costs versus cer-
tainty of limiting temperature increase. Global En-
vironmental Change - Human and Policy Dimensions,
17(2):260–280.
Edenhofer, O., Knopf, B., Barker, T., Baumstark, L.,
Bellevrat, E., B., C., Criqui, P., Isaac, M., Kitous, A.,
Kypreos, S., Leimbach, M., Lessmann, K., Magne, B.,
Scrieciu, S., Turton, H., and van Vuuren, D. (2010).
The economics of low stabilization: Model compar-
ison of mitigation strategies and costs. The Energy
Journal, 31:11–48.
Garg, A., Shukla, P., and K., B. (2014). India report
- alternate development pathways for india: Align-
ing copenhagen climate change commitments with
national energy security and economic development.
low climate impact scenarios and the implications
of required tight emission control strategies [limits].
Ahmedabad, India: Indian Institute of Management,
Ahmedabad, .
IEA (2015). Energy and climate change. International En-
ergy Agency: World Energy Outlook Special Report.
Kitous, K. and Keramidas, K. (2015). Jrc policy brief:
Analysis of scenarios integrating the indcs. European
Comission.
Meinshausen, M., Raper, S., and Wigley, T. (2011). Emulat-
ing coupled atmosphere-ocean and carbon cycle mod-
els with a simpler model, magicc6 - part 1: Model
description and calibration. Atmos. Chem. Phys.,
11:1417–1456.
Rahmstorf, S. and Coumou, D. (2011). Increase of extreme
events in a warming world. Proc. Natl. Ac. Sci., 108.
Riahi, K., A., G., and Nakicenovic, N. (2007). Scenarios
of long-term socio-economic and environmental de-
velopment under climate stabilization. Technological
Forecasting and Social Change (Special Issue: Green-
house Gases - Integrated Assessment), 74(7):887–
935.
Rogelj, J., McCollum, D. L., ONeill, B. C., and Riahi, K.
(2013). 2020 emissions levels required to limit warm-
ing to below 2c. Nature Climate Change, 3.
Silliman, J., Kharin, V., Zwiers, F., Zhang, X., and
Bronaugh, D. (2013). Climate extremes indices in
the cmip5 multimodel ensemble: Part2. future climate
projections. J. Geophys. Res., 118.
Spencer, T. and Pierfederici, R. (2015). Beyond the num-
bers: Understanding the transformation induced by in-
dcs. Studies, 5.
UNEP (2010). The emissions gap report. United Nations, .
UNFCC (2015). Paris agreement. Conference of the Parts.
UNFCCC (2010). Cancun agreement. Conference of the
Parts.
van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K.,
Thomson, A., Hibbard, K., Hurtt, C., Kram, T., Krey,
V., Lamarque, J., Masui, T., Meinshausen, M., Naki-
cenovic, N., S.J., S., and Rose, S. (2011). The repre-
sentative concentration pathways: an overview. Cli-
mate Change, 109:5–31.
The Importance of Increasing Actual INDCs’ Ambitions to Meet The Paris Agreement Temperature Targets - An Innovative Fuzzy Logic
Approach to Temperature Control and Climate Assessment using FACTS
367