Figure 16: Memberships
track 3.
project, Action and Intention Recognition in Human
Interaction with Autonomous Systems.
REFERENCES
(2010). Edinburgh informatics forum pedestrian
database. http://homepages.inf.ed.ac.uk/rbf/
FORUMTRACKING/.
A. Ciaramella, M.G.C.A.Cimino, F. M. and Straccia, U.
(2010). Combining fuzzy logic and semantic web
to enable situation-awareness in service recommenda-
tion. Database and Expert Systems Applications, Lec-
ture Notes in Computer Science., Volume 6261:31–45.
Aarno, D. (2007). Intention recognition in human machine
collaborative systems. Licentiate Thesis Stockholm,
Sweden., pages 1–104.
A.F.Johansson (2009). Data driven modeling of pedestrian
crowds. Doctoral Thesis., pages 1–185.
Chadalavada, R. T., Andreasson, H., Krug, R., and Lilien-
thal, A. J. (2015). That’s on my mind! robot to human
intention communication through on-board projection
on shared floor space. European Conference on Mo-
bile Robots (ECMR).
(Ed.), W. L. (1995). The control handbook. page 316.
F. Sadri, W. W. and Xafi, A. (2012). Intention recognition
with clustering. Ambient Intelligence., Lecture Notes
in Computer Science, 7683:379–384.
Firl, J. (2014). Probabilistic maneuver recognition in traffic
scenarios. Doctoral dissertation, KIT Karlsruhe,.
Han, T. A. and Pereira, L. (2013). State of the art of
intention recognition. AI Communications., Volume
26:237–246.
Heinze, C. (2004). Modelling intention recognition for in-
telligent agent systems. Research Report, Air Opera-
tions Division.
J. Bruce, J. W. and Vaughan, R. (2015). Human-robot ren-
dezvous by co-operative trajectory signals. pages 1–2.
J.V. Gomez, N. M. and Garrido, S. (2013). Social path plan-
ning: Generic human-robot interaction framework for
robotic navigation tasks. Workshop of the IEEE/RSJ
Intern. Conf. on Int. Rob. and Syst. (IROS’13).
Khatib, O. (1985). Real-time 0bstacle avoidance for ma-
nipulators and mobile robots. IEEE Int. Conf. On
Robotics and Automation,St. Loius,Missouri, 1985,
page 500505.
Krauthausen, P. (2012). Learning dynamic systems for in-
tention recognition in human-robot-cooperation. Doc-
toral dissertation, University report, Karlsruhe.
M. Bennewitz, W. Burgard, G. C. and Thrun, S. (2005).
Learning motion patterns of people for compliant
robot motion. The International Journal of Robotics
Research., vol. 24 no. 1:31–48.
Makris, D. and Ellis, T. (2010). Spatial and probabilistic
modelling of pedestrian behaviour. In Proc. ICRA,
page 39603965. IEEE.
Mataric, M. (1990). A distributed model for mobile robot
environment-learning and navigation. Technical Re-
port., pages 1–139.
P. Leica, M.Toibero, F. R. and Carelli, R. (2015). Switched
control to robot-human bilateral interaction for guid-
ing people. Journal of Intelligent and Robotic Sys-
tems,DORDRECHT. Argentina. 77. 1., pages 73–93.
Palm, R. and Bouguerra, A. (2013). Particle swarm opti-
mization of potential fields for obstacle avoidance. In
Proceeding of RARM 2013, Istanbul, Turkey. Volume:
Scient. coop. Intern. Conf. in elect. and electr. eng.
R.-E.Precup, M. T. and Preitl, S. (2009). Fuzzy logic con-
trol system stability analysis based on lyapunov’s di-
rect method. In International Journal of Computers,
Communications and Control,vol. 4, no. 4, pages 415–
426.
R. Palm, B. I. and Kadmiry, B. (2009). Recognition of
human grasps by time-clustering and fuzzy model-
ing. Robotics and Autonomous Systems, Vol. 57, No.
5.:484–495.
R. Palm, R. C. and Lilienthal, A. (2016). Recognition of
human-robot motion intentions by trajectory observa-
tion. In 9th Intern. Conf. on Human System Interac-
tion, HSI2016. IEEE.
Runkler, T. and Palm, R. (1996). Identification of nonlinear
system using regular fuzzy c-elliptotype clustering. In
Proc. FUZZIEEE 96, pages 1026–1030. IEEE.
Satake, S., Kanda, T., Glas, D. F., Imai, M., Ishiguro, H.,
and Hagita, N. (2009). How to approach humans?-
strategies for social robots to initiate interaction. 13th
Intern. Symp. on Experimental Robotics, pages 109–
116.
T. Ellis, E. S. and Reid, I. (2009). Modelling pedes-
trian trajectory patterns with gaussian processes. In
2009 IEEE 12th International Conference on Com-
puter Vision, Workshops (ICCV Workshops), pages
1229–1234. IEEE.
T. Fraichard, R. P. and Reignier, P. (2014). Human-robot
motion: Taking attention into account . Research Re-
port, RR-8487.
Tahboub, K. A. (2006). Intelligent human-machine interac-
tion based on dynamic bayesian networks probabilis-
tic intention recognition. Journal of Intelligent and
Robotic Systems., Volume 45, Issue 1:31–52.
Takagi, T. and Sugeno, M. (1985). Identification of sys-
tems and its applications to modeling and control.
IEEE Trans. on Syst., Man, and Cyb., Vol. SMC-15.
No.1:116–132.