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Abstract: In this work, we introduce a new nature-inspired multiobjective numerical optimization algorithm where 

Pareto dominance is incorporated into Adaptive Wind Driven Optimization for handling multiobjective 

optimization problems and named as Multiobjective Adaptive Wind Driven Optimization (MO-AWDO) 

method. This new approach utilizes an external repository of air parcels to record the non-dominated Pareto-

fronts found at each iteration via the fast non-dominated sorting algorithm, which are then utilized in the 

velocity update equation of the AWDO for the next iteration. The performance of the MO-AWDO is tested 

on five different numerical test functions with two objectives and results indicate that the MO-AWDO offers 

a very competitive approach compared to well-known methods in the published literature even performing 

better than NSGA-II for ZDT4 test function. 

1 INTRODUCTION 

Evolutionary algorithms (EA) and nature-inspired 

optimization methods like Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), etc. were successfully utilized 

since their introduction to the literature as single 

objective optimization algorithms. To handle multi-

objective functions, variants of these algorithms were 

proposed and they were shown to be very effective 

(Deb, 2002; Zitzler, 2000; Coello, 2004; Coello, 

2007). The primary goal of these multi-objective 

optimization algorithms is to identify the Pareto-

optimal front solutions as diversely as possible. To 

achieve this, different methods were proposed such as 

archiving the solutions over iterations, preserving 

elitism, implementing crowding distance, utilizing 

adaptive grids, introducing new operators into 

existing methods or hybridization of multiple EAs 

and many others. 

In this work, we are introducing a new population 

based multi-objective optimization method, where 

Pareto dominance is incorporated into the Adaptive 

Wind Driven Optimization.  At each iteration Pareto-

fronts are identified using the fast non-dominated 

sorting algorithm and stored in an external 

population. At each iteration, each particle utilizes 

one of the randomly selected members of the external 

repository to update its velocity vector and then the 

position of the particle is updated accordingly.  Such 

an external population provides a diverse set of 

solutions on the non-dominated Pareto-front that the 

rest of the population can utilize to follow and to 

update their location on the search domain. 

The rest of this paper is structured as follows. The 

second section introduces the Wind Driven 

Optimization (WDO) (Bayraktar, 2010) algorithm 

and discusses the update equations. The third section 

describes the Adaptive WDO (AWDO) technique 

(Bayraktar, 2015) and the fourth section describes the 

newly introduced multiobjective AWDO algorithm 

(MO-AWDO) in detail. The fifth section 

demonstrates the efficient implementation of the MO-

AWDO on five numerical benchmark functions.  

Conclusions and recommendations for future work 

are presented in the last two sections. 

2 WIND DRIVEN 

OPTIMIZATION 

The Wind Driven Optimization (WDO) algorithm 

was first introduced in (Bayraktar, 2010) as an 

efficient population-based and nature-inspired global 

Bayraktar, Z. and Komurcu, M.
Multiobjective Adaptive Wind Driven Optimization.
DOI: 10.5220/0006031801150120
In Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016) - Volume 1: ECTA, pages 115-120
ISBN: 978-989-758-201-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

115



optimization algorithm. The WDO is inspired by the 

motion of wind in atmosphere and is derived from the 

atmospheric dynamics equations in hydrostatic 

equilibrium (Bayraktar, 2013). The movement of 

wind, or in other words, the movement of an 

infinitesimally small air parcel in wind, can be 

explained via Euler description, where one can derive 

the position and velocity of the air parcel from various 

forces that are exerted on the air parcel by utilizing 

Newton’s second law of motion. While the WDO 

algorithm tries to stay true to the real physical 

equations, certain assumptions and simplifications 

are made to achieve an efficient numerical 

optimization algorithm mapped to a search space with 

N-dimensions. Details of the WDO can be found in 

(Bayraktar, 2013), hence we will only briefly describe 

the position and velocity update equations below: 

          𝑢𝑛 = (1 − 𝛼)𝑢𝑐 − 𝑔𝑥𝑐      

+ |
𝑖−1

𝑖
| 𝑅𝑇(𝑥𝑚𝑎𝑥 − 𝑥𝑐) +

𝑐∗𝑢𝑐
𝑜𝑡ℎ𝑒𝑟𝑑

𝑖
         (1) 

where un is the updated velocity for next iteration 

and, uc is the velocity at the current iteration. The xc 

term represents the current position of the air parcel 

in the search space and xmax represents the best 

position found so far during the search. uc
otherd is 

velocity at another dimension affecting the velocity 

update in dimension, d. Air parcels are ranked by their 

pressure value, i.e. cost function value, among 

themselves, where i represents the rank of the air 

parcels within the population. Let us call this ranking 

as the population ranking. Low-pressure value, i.e. 

low cost, indicates a good solution and high-pressure 

value indicates a bad solution. Other terms in 

equation 1 are the inherent coefficients of the 

classical WDO algorithm and are preset by the user, 

which allow users to tune them if needed (Bayraktar, 

2013). These terms are friction coefficient, α, 

gravitational constant, g, Coriolis constant, c, to 

represent the rotation of the Earth, universal gas 

constant, R, and temperature, T, which can be 

combined into single coefficient term of RT.  Air 

parcels’ position is bounded within the range of [-1, 

1] before the position vector is linearly scaled to the 

upper and lower bounds of the optimization problem. 

Updated velocity is limited to a value of Vmax = + |0.5|, 

if it becomes larger than the Vmax. 

After the new velocity, un, is computed the position 

is updated by the position update equations:  

𝑥𝑛 = 𝑥𝑐 + 𝑢𝑛 × Δ𝑡                        (2) 

where xn is the updated position of an air parcel, that 

is the sum of the current position vector, xc, and 

updated velocity, un, with the assumption that time 

step is set to unity, Δt = 1. Using equations 1 and 2, 

the position of the air parcel changes at each iteration 

on the search domain. The WDO algorithm 

terminates either when a predetermined level of 

pressure value is achieved or when the maximum 

number of iterations is exhausted. 

3 ADAPTIVE WIND DRIVEN 

OPTIMIZATION 

The inherent terms of the velocity update equations in 

the classical WDO, namely, α, g, c, and RT, must be 

determined by the user, which provides the flexibility 

to tune the algorithm performance per optimization 

problem at hand. A numerical study is conducted in 

(Bayraktar, 2013) to recommend the best value 

ranges for these terms. However, such flexibility 

brings a challenge to novice users and selecting the 

most appropriate values for the inherent terms 

becomes a burden. To eliminate algorithms 

dependency on user input, Adaptive Wind Driven 

Optimization (AWDO) algorithm was introduced in 

(Bayraktar, 2015).  

The AWDO utilizes an existing optimization 

algorithm, namely, Covariance Matrix Adaptation 

Evolutionary Strategy (CMAES) as a block-box 

solver to select the inherent terms. At each iteration, 

pressure values are calculated for each parcel by the 

WDO and these values are passed on to CMAES as 

cost values so that CMAES can choose a new set of 

values for the inherent terms, α, g, c, and RT, based 

on the cost from the WDO. This creates a four-

dimensional optimization problem for CMAES with 

the same population size as the WDO, and CMAES 

does not make any cost function calls since it utilizes 

the pressure values computed by the WDO. Because 

the inherent terms are chosen adaptively by CMAES, 

there is no need to preset them at initialization 

removing the burden on user and creating a parameter 

free adaptive wind driven optimization method. 

4 MULTIOBJECTIVE  

ADAPTIVE WIND DRIVEN 

OPTIMIZATION ALGORITHM 

The cost function of WDO (or AWDO) was 

originally designed for single objectives while one 

can also optimize multiobjective problems through 

implementing a weighted sum cost function 

(Komurcu, 2011; Bayraktar 2011). However, instead 
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of a weighted sum of multiple objectives, one can aim 

to find the Pareto-optimal solutions, which are the 

best solutions to the problem but are not better than 

each other. Multiobjective evolutionary algorithms 

have shown to be effective in finding multiple Pareto-

optimal solutions in one single run since they utilize 

large populations (Deb, 2001; Fonseca, 1993; Zitzler, 

1998). Similarly, we introduce a new population-

based multiobjective optimization method for 

AWDO utilizing fast-nondominated sorting method 

(Deb, 2002) to identify Pareto-front solutions and an 

external population to archive the non-dominated 

fronts. We will refer to this method as Multiobjective 

Adaptive Wind Driven Optimization (MO-AWDO). 

 

Figure 1: Flowchart of the Multiobjective Adaptive Wind 

Driven Optimization Algorithm (MO-AWDO). 

In MO-AWDO method, the maximum velocity is 

bounded by Vmax = + |0.5| but chosen adaptively by 

the AWDO in addition to the four inherent terms 

mentioned in the previous section. The MO-AWDO 

flowchart is shown in Figure 1, where the algorithm 

starts with randomly initializing the position and 

velocity vectors. Then, at each iteration, pressure 

functions are evaluated for each member in the 

population. Based on the two cost functions per 

multiobjective problem, the fast non-dominated 

sorting algorithm determines the Pareto-fronts among 

the current population members, i.e. each member is 

assigned a Pareto-front number based on the sorting. 

This Pareto-front rank information for each parcel is 

used in equation 1 in place of i. At each iteration, 

members with Pareto-front rank one are added to the 

external population archive and then the archived 

population also goes through the fast non-dominated 

sorting. The members of the archived population with 

Pareto-front rank one then become the ones selected 

for the xmax in equation 1, simply because they 

represent the global best solutions found so far with 

the non-dominated Pareto-fronts. Once velocity is 

updated with the modifications described above, then 

the position is updated as shown in equation 2.  Next, 

boundaries are checked along with the termination 

criterion. If the termination criterion is met, the 

algorithm terminates with results of Pareto-front rank 

one of the archived population as final best results. 

5 NUMERICAL RESULTS 

In this section, we describe and utilize five test 

functions to demonstrate the performance of the MO-

AWDO algorithm. These standard numerical 

functions are selected from published literature (Deb, 

2002; Zitzler, 2000; Coello, 2004) and many others 

can be found in the literature. We picked five 

representative functions with different dimensions 

and properties to be tested here. All of these five 

problems have two objective functions and only 

Kita’s function comes with constraints. All cases 

were run with a population size of 100 air parcels for 

maximum number of 250 iterations totaling a 

maximum of 25,000 function evaluations as in (Deb, 

2002) to compare.  

5.1 Schaffer’s Function 

The Schaffer’s function is a convex problem and it is 

the simplest out of all problems presented here, such 

that the number of decision variables is only n=1. The 

variable bounds are set to be within [-103, 103], where  
 

 

Figure 2: Pareto front produced by MO-AWDO for the 

Schaffer’s Function shown with circles. The true Pareto 

front is shown as a continuous line. 
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the optimal solutions are within the range of x ∊ [0, 
2]. The two cost functions for the Schaffers’ 
function are: 

F1(x)=x2,   and   F2(x)=(x-2)2 (3) 

Figure 2 shows the results of the MO-AWDO 

from the archived Pareto population at the end of the 

maximum number of iterations. The true Pareto front 

for the Schaffer’s function is illustrated with a 

continuous line on the same figure as well. 

5.2 Kita’s Function 

The Kita’s function is a constrained multi-objective 

function with number of decision variables of n=2. 

The variable bounds are limited to be within [0, 7]. 

The two cost functions to be maximized are shown 

below along with constraints: 

F1(x1, x2) = −x12+x2 

and 

F2(x1, x2) = (x1/2) +x2+1. 

(4) 

subject to 

 

 

Figure 3: Pareto front produced by MO-AWDO for the 

Kita’s Function shown with circles. The true Pareto front is 

shown as a continuous line. 

Since MO-AWDO is designed to minimize the 

pressure (i.e. cost function), we simply took the 

negative of the pressure for the Kita’s function to be 

minimized. Constraints are handled at pressure 

computation so that if any of the three constraints are 

violated, the pressure is penalized by setting it to be a 

very large value, i.e. 1e-5. Such high pressure 

encourages the particles to stay away from the 

constraints and converge on the Pareto front. 

Figure 3 shows the results of the MO-AWDO  

from the archived Pareto population at the end of the 

last iteration. The true Pareto front for the Kita’s 

function is illustrated with a continuous line on the 

same figure along with the results. 

5.3 Kursawe’s Function 

The Kursawe’s function is a nonconvex multi-
objective function with number of decision variables 
of n=3. The variable bounds are set to be within  
[-5, 5]. The two cost functions to be minimized are: 

 

(5) 

Figure 4 shows the results of the MO-AWDO 
from the archived Pareto population at the end of the 
maximum number of iterations. The true Pareto front 
for the Kursawe’s function is illustrated with a 
continuous line on the same figure along with the 
results. The MO-AWDO converges to the true Pareto 
front finding diverse solutions including the extreme 
points. 

 

Figures 4: Pareto front produced by MO-AWDO for the 

Kursawe’s Function shown with circles. The true Pareto 

front is shown as a continuous line. 

5.4 ZDT1 Function 

The ZDT1 function is a convex multi-objective 
function with number of decision variables of n=30. 
The variables are bounded within [0, 1] and the two 
cost functions to be minimized are: 

𝐹1(𝑥) = 𝑥1   

𝑎𝑛𝑑 

𝐹2(𝑥) = 𝑔(𝑥)[1 − √(𝑥1/𝑔(𝑥))] 

(6) 

where, 

                 𝑔(𝑥) = 1 + 9(∑ 𝑥𝑖
𝑛
𝑖=2 )/(𝑛 − 1) 
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Figure 5 shows the results of the MO-AWDO 
from the archived Pareto population at the end of the 
maximum number of iterations. The true Pareto front 
for the ZDT1 function is illustrated with a continuous 
line on the same figure along with the results. The 
MO-AWDO converges to the true Pareto front 
finding diverse solutions including the extreme 
points. 

 

Figure 5: Pareto front produced by MO-AWDO for the 

ZDT1 Function shown with circles. The true Pareto front is 

shown as a continuous line. 

5.5 ZDT4 Function 

The ZDT4 function is a nonconvex multi-objective 
function with number of decision variables of n=10. 
The variable bounds are x1 ∊ [0, 1], and xi ∊ [-5, 5] for 
i=2,…,n.   The two cost functions to be minimized are: 

𝐹1(𝑥) = 𝑥1   
𝑎𝑛𝑑                                   (7) 

𝐹2(𝑥) = 𝑔(𝑥)[1 − √(𝑥1/𝑔(𝑥))] 
where,  

𝑔(𝑥) = 1 + 10(𝑛 − 1)

+ ∑ (𝑥𝑖
2 − 10cos (4𝜋𝑥𝑖))

𝑛

𝑖=2
   

The ZDT4 function has 219 different local Pareto-

optimal fronts (Zitzler, 2000), and only one of them 

is the global Pareto-optimal front. This challenging 

problem has been studied in (Deb, 2002) and they 

demonstrated that NSGA-II, and other MO-

algorithms compared in their paper needed a 

population of 500 members ran for 250 iterations to 

be able find the global Pareto-optimal front. On the 

other hand, MO-AWDO can easily find the global 

Pareto-optimal front with a population of 100 air 

parcels within 100 iterations as shown in Figure 6, 

providing 10x speed up in convergence. 

Figure 6 shows the results of the MO-AWDO 

from the archived Pareto population at the end of the 

maximum of 100 iterations using only 100 members. 

The true global Pareto-optimal front for the ZDT4 

function is shown with a continuous line on the same 

figure. The MO-AWDO converges to the true Pareto 

front finding diverse solutions including the extreme 

points.  

 

Figure 6: Pareto front produced by MO-AWDO for the 

ZDT4 Function shown with circles. The true global Pareto-

optimal front is shown as a continuous line. 

6 CONCLUSIONS 

In this work, we introduced the Multiobjective 
Adaptive Wind Driven Optimization (MO-AWDO) 
algorithm and successfully demonstrated its efficient 
performance on five different numerical multi-
objective benchmark functions with different 
dimensions and properties from published literature. 
The MO-AWDO combines the fast non-dominated 
sorting method with the Adaptive Wind Driven 
Optimization to identify the Pareto-fronts at each 
iteration and archives them in an external population. 
At each iteration, randomly selected archived non-
dominated Pareto-optimal solutions are utilized as the 
global best solutions in the velocity update equation 
of the AWDO, providing elitism while preserving 
diverse non-dominated Pareto-fronts. Successful 
demonstration of the MO-AWDO shows that it can 
outperform well-known multi-objective algorithms 
like NSGA-II on difficult problems like ZDT4. 

7 FUTURE WORK 

As future work, we aim to improve how the MO-
AWDO handles the archived population in terms of 
size and diversity so that it can record the most 
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diverse Pareto-fronts with minimum number of 
members reducing memory requirements as iterations 
progresses. Also, extension of MO-AWDO to handle 
many-objective functions are also planned as future 
work. 
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