Enriching What-If Scenarios with OLAP Usage Preferences

Mariana Carvalho, Orlando Belo

2016

Abstract

Nowadays, enterprise managers involved in decision-making processes struggle with numerous problems related to market position or business reputation of their companies. Owning the right and high quality set of information is a crucial factor for developing business activities and consequently gaining competitive advantages on business arenas. However, retrieving information is not enough. The possibility to simulate hypothetical scenarios without harming the business using What-If analysis tools and to retrieve highly refined information is an interesting way of achieving such advantages. In this paper, we propose an approach for helping to optimize enterprise decision processes using What-If analysis scenarios combined with OLAP usage preferences. We designed and developed a specific piece of software, which aims to discover the best recommendations for What-If analysis scenarios’ parameters using OLAP usage preferences, which incorporates user experience in the definition and analysis of a target decision-making scenario.

References

  1. Agrawal, R., Wimmers E., 2000. A framework for expressing and combining preferences. ACM SIGMOD Record. 29 (2).
  2. Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB. 1215, pp. 487-499.
  3. Ahmed, E. B., Nabli, A., Gargouri, F., 2012. Building MultiView analyst profile from multidimensional query logs: from consensual to conflicting preferences.78 arXiv preprint arXiv:1203.3589.
  4. Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E., 2011. Mining preferences from OLAP query logs for proactive personalization. Advances in Databases and Information Systems. Springer Berlin Heidelberg.
  5. Bimonte, S., Negre, E., 2016. Evaluation of user satisfaction with OLAP recommender systems: an application to RecoOLAP on an agricultural energetic consumption datawarehouse. In International Journal of Business Information Systems, 21(1), pp. 117-136.
  6. Chomicki, J., 2003. Preference formulas in relational queries. ACM Transactions on Database Systems (TODS). 28(4), pp. 427-466.
  7. Giacometti, A., Marcel, P., Negre, E., Soulet, A., 2009. Query recommendations for OLAP discovery driven analysis. In Proceedings of the ACM twelfth international workshop on Data warehousing and OLAP.
  8. Golfarelli, M., Rizzi, S. Proli, A., 2006. Designing What-If Analysis: Towards a Methodology. In DOLAP'06, Arlington, Virginia, USA, pp. 51-58.
  9. Golfarelli, M., Rizzi S., 2009. Expressing OLAP preferences. Scientific and Statistical Database Management. Springer Berlin Heidelberg.
  10. Hadjali, A., Kaci S., Prade H., 2008. Database preferences queries - A possibilistic logic approach with symbolic priorities. Foundations of Information and Knowledge Systems. Springer Berlin Heidelberg. pp. 291-310.
  11. Han, J., 1997. OLAP mining: An integration of OLAP with data mining.78 In Proceedings of the 7th IFIP. p. 1-9.
  12. Harinarayan, V., Rajaraman, A. Ullman, J., 1996. Implementing data cubes efficiently. ACM SIGMOD Record. 25(2).
  13. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G., 2009. Preference-based recommendations for OLAP analysis. Springer Berlin Heidelberg.
  14. Kellner, Marc I., Madachy, R., Raffo, D., 1999. Software process simulation modeling: why? what? how?. Journal of Systems and Software. 46(2), pp. 91-105.
  15. Kießling, W., 2002. Foundations of preferences in database systems. In Proceedings of the 28th international conference on Very Large Data Bases (pp. 311-322). VLDB Endowment.
  16. Kozmina, N., 2015. Producing Report Recommendations from Explicitly Stated User Preferences. Baltic Journal of Modern Computing, 3(2), pp. 110.
  17. Koutsoukis, N., Mitra, G., Lucas, C., 1999. Adapting online analytical processing for decision modelling: The interaction of information and decision technologies. Decision Support Systems. 26(1), pp. 1-30.
  18. Lacroix, M., Lavency P., 1987. Preferences; Putting More Knowledge into Queries. In VLDB. 87, 1987.
  19. Letchner, J., Krumm J., Horvitz E., 2006. Trip router with individualized preferences (trip): Incorporating personalization into route planning. In Proceedings of the National Conference on Artificial Intelligence. 21(2), pp. 1795.
  20. Marcel, P., 2014. Log-driven User-centric OLAP. In Information and Communication Technology, Electronics and Microelectronics (MIPRO), 37th International Convention. pp. 1446-1451.
  21. Microsoft SQL Server Product Samples: Database (2015) Available at: [http://msftdbprodsamples.codeplex.com/] [Accessed 13 fev. 2016].
  22. Ore, O., Ore, Y., 1962. Theory of graphs (Vol. 38). Providence, RI: American Mathematical Society.
  23. Varga, J., Romero, O., Pedersen, T. B., Thomsen, C. 2014. Towards next generation BI systems: The analytical metadata challenge. In Data Warehousing and Knowledge Discovery. pp. 89-101.
Download


Paper Citation


in Harvard Style

Carvalho M. and Belo O. (2016). Enriching What-If Scenarios with OLAP Usage Preferences . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016) ISBN 978-989-758-203-5, pages 213-220. DOI: 10.5220/0006040402130220


in Bibtex Style

@conference{kdir16,
author={Mariana Carvalho and Orlando Belo},
title={Enriching What-If Scenarios with OLAP Usage Preferences},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)},
year={2016},
pages={213-220},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006040402130220},
isbn={978-989-758-203-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)
TI - Enriching What-If Scenarios with OLAP Usage Preferences
SN - 978-989-758-203-5
AU - Carvalho M.
AU - Belo O.
PY - 2016
SP - 213
EP - 220
DO - 10.5220/0006040402130220