Louzada, F., Maiorano, A. C., and Ara, A. (2016). iSports:
A web-oriented expert system for talent identification
in soccer. Expert Systems with Applications, 44:400 –
412.
Maszczyk, A., Zaj ˛ac, A., and Ryguła, I. (2011). A neural
network model approach to athlete selection. Sports
Engineering, 13(2):83–93.
Omorczyk, J., Nosiadek, L., Nosiadek, A., and Chwała, W.
(2014). Use of biomechanical analysis for technical
training in artistic gymnastics using the example of a
back handspring. In Urbanik, C., Mastalerz, A., and
Iwa
´
nska, D., editors, Selected problems of biomechan-
ics of sport and rehabilitation, volume II, pages 104–
115. Józef Piłsudski University of Physical Education
in Warsaw.
Papi
´
c, V., Rogulj, N., and Pleština, V. (2009). Identifica-
tion of sport talents using a web-oriented expert sys-
tem with a fuzzy module. Expert Systems with Appli-
cations, 36(5):8830 – 8838.
Przednowek, K., Iskra, J., and Przednowek, K. H. (2014).
Predictive modeling in 400-metres hurdles races. In
2nd Int. Congress on Sport Sciences Research and
Technology Support - icSPORTS 2014, pages 137–
144. SCITEPRESS, Rome, Italy.
R Core Team (2016). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.
Randers, M. B., Mujika, I., Hewitt, A., Santisteban, J.,
Bischoff, R., Solano, R., Zubillaga, A., Peltola, E.,
Krustrup, P., and Mohr, M. (2010). Application
of four different football match analysis systems:
A comparative study. Journal of Sports Sciences,
28(2):171–182.
Riza, L. S., Bergmeir, C., Herrera, F., and Benítez, J. M.
(2015). frbs: Fuzzy rule-based systems for classifica-
tion and regression in R. Journal of Statistical Soft-
ware, 65(6):1–30.
Roczniok, R., Maszczyk, A., Stanula, A., Czuba, M.,
Pietraszewski, P., Kantyka, J., and Starzy
´
nski, M.
(2013). Physiological and physical profiles and on-ice
performance approach to predict talent in male youth
ice hockey players during draft to hockey team. Isoki-
netics and Exercise Science, 21(2):121–127.
Sañudo, B., Rueda, D., Pozo-Cruz, B. D., de Hoyo, M., and
Carrasco, L. (2014). Validation of a video analysis
software package for quantifying movement velocity
in resistance exercises. Journal of Strength and Con-
ditioning Research.
Venables, W. N. and Ripley, B. D. (2002). Modern Applied
Statistics with S. Springer, New York.
Wang, L. X. and Mendel, J. M. (1992). Generating fuzzy
rules by learning from examples. IEEE Transactions
on Systems, Man, and Cybernetics, 22(6):1414–1427.
Wiktorowicz, K., Przednowek, K., Lassota, L., and Krzes-
zowski, T. (2015). Predictive modeling in race walk-
ing. Computational Intelligence and Neuroscience,
2015:9. Article ID 735060.
Zou, H. and Hastie, T. (2016). Package "elasticnet". CRAN.
A Fuzzy-based Software Tool Used to Predict 110m Hurdles Results During the Annual Training Cycle
181