resulting peak firing rate of the grid cell itself may in-
dicate a possible correlation. To the best of our knowl-
edge no such experiments were done yet.
However, neurons are also known to have several
strategies to directly compensate for noise in their in-
put signal by, e.g., changing electrotonic properties
of their cell membranes (Koch, 2004). Such adapta-
tions could be represented in our grid cell model by
normalizing ratio r with respect to the level of noise.
How such a normalization could be implemented is
one subject of our future research.
In addition to these neurobiological aspects the
presented results also illustrate the general ability of
prototype-based learning algorithms like the GNG or
RGNG to learn the structure of an input space even in
the presence of very high levels of noise as shown in
the last row of figure 5.
REFERENCES
Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T.,
Witter, M. P., Moser, E. I., and Moser, M.-B. (2010).
Grid cells in pre- and parasubiculum. Nat Neurosci,
13(8):987–994.
Doherty, K., Adams, R., and Davey, N. (2005). Hierar-
chical growing neural gas. In Ribeiro, B., Albrecht,
R., Dobnikar, A., Pearson, D., and Steele, N., editors,
Adaptive and Natural Computing Algorithms, pages
140–143. Springer Vienna.
Domnisoru, C., Kinkhabwala, A. A., and Tank, D. W.
(2013). Membrane potential dynamics of grid cells.
Nature, 495(7440):199–204.
Fritzke, B. (1995). A growing neural gas network learns
topologies. In Advances in Neural Information Pro-
cessing Systems 7, pages 625–632. MIT Press.
Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and
Moser, M.-B. (2004). Spatial representation in the en-
torhinal cortex. Science, 305(5688):1258–1264.
Gatome, C., Slomianka, L., Lipp, H., and Amrein, I. (2010).
Number estimates of neuronal phenotypes in layer
{II} of the medial entorhinal cortex of rat and mouse.
Neuroscience, 170(1):156 – 165.
Giocomo, L. M. and Hasselmo, M. E. (2008). Time con-
stants of h current in layer ii stellate cells differ along
the dorsal to ventral axis of medial entorhinal cortex.
The Journal of Neuroscience, 28(38):9414–9425.
Giocomo, L. M., Zilli, E. A., Fransn, E., and Hasselmo,
M. E. (2007). Temporal frequency of subthreshold os-
cillations scales with entorhinal grid cell field spacing.
Science, 315(5819):1719–1722.
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and
Moser, E. I. (2005). Microstructure of a spatial map
in the entorhinal cortex. Nature, 436(7052):801–806.
Hausser, M. (2014). Optogenetics: the age of light. Nat
Meth, 11(10):1012–1014.
Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A.,
Burke, J. F., Wei, X.-X., Suthana, N., Sperling, M. R.,
Sharan, A. D., Fried, I., and Kahana, M. J. (2013). Di-
rect recordings of grid-like neuronal activity in human
spatial navigation. Nat Neurosci, 16(9):1188–1190.
Kerdels, J. (2016). A Computational Model of Grid Cells
based on a Recursive Growing Neural Gas. PhD the-
sis, FernUniversit
¨
at in Hagen, Hagen.
Kerdels, J. and Peters, G. (2013). A computational model
of grid cells based on dendritic self-organized learn-
ing. In Proceedings of the International Conference
on Neural Computation Theory and Applications.
Kerdels, J. and Peters, G. (2015a). Analysis of high-
dimensional data using local input space histograms.
Neurocomputing, 169:272 – 280.
Kerdels, J. and Peters, G. (2015b). A new view on grid cells
beyond the cognitive map hypothesis. In 8th Confer-
ence on Artificial General Intelligence (AGI 2015).
Killian, N. J., Jutras, M. J., and Buffalo, E. A. (2012). A
map of visual space in the primate entorhinal cortex.
Nature, 491(7426):761–764.
Koch, C. (2004). Biophysics of Computation: Information
Processing in Single Neurons. Computational Neuro-
science Series. Oxford University Press, USA.
Krupic, J., Burgess, N., and OKeefe, J. (2012). Neural
representations of location composed of spatially pe-
riodic bands. Science, 337(6096):853–857.
Lingenhhl, K. and Finch, D. (1991). Morphological char-
acterization of rat entorhinal neurons in vivo: soma-
dendritic structure and axonal domains. Experimental
Brain Research, 84(1):57–74.
Mhatre, H., Gorchetchnikov, A., and Grossberg, S. (2010).
Grid cell hexagonal patterns formed by fast self-
organized learning within entorhinal cortex (published
online 2010). Hippocampus, 22(2):320–334.
Pilly, P. K. and Grossberg, S. (2012). How do spatial learn-
ing and memory occur in the brain? coordinated learn-
ing of entorhinal grid cells and hippocampal place
cells. J. Cognitive Neuroscience, pages 1031–1054.
Podolak, I. and Bartocha, K. (2009). A hierarchical
classifier with growing neural gas clustering. In
Kolehmainen, M., Toivanen, P., and Beliczynski, B.,
editors, Adaptive and Natural Computing Algorithms,
volume 5495 of Lecture Notes in Computer Science,
pages 283–292. Springer Berlin Heidelberg.
Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L.,
Witter, M. P., Moser, M.-B., and Moser, E. I.
(2006). Conjunctive representation of position, di-
rection, and velocity in entorhinal cortex. Science,
312(5774):758–762.
Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser,
M.-B., and Moser, E. I. (2012). The entorhinal grid
map is discretized. Nature, 492(7427):72–78.
Yartsev, M. M., Witter, M. P., and Ulanovsky, N. (2011).
Grid cells without theta oscillations in the entorhinal
cortex of bats. Nature, 479(7371):103–107.
NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications
38