the Fifth IEEE/ACM International Workshop on Grid
Computing, pages 4–10.
Brachman, R. J. and Anand, T. (1996). The process of
knowledge discovery in databases. In Advances in
Knowledge Discovery and Data Mining, pages 37–57.
American Association for Artificial Intelligence.
B¨uchner, A. G., Mulvenna, M. D., Anand, S. S., and
Hughes, J. G. (1999). An internet-enabled knowledge
discovery process. In Proceedings of the 9th Interna-
tional Database Conference, pages 13–27.
Diamantini, C., Potena, D., Domenico, and Smari, W. W.
(2006). Collaborative knowledge discovery in
databases: A knowledge exchange perspective. In
Proceedings of the AAAI Fall Symposium on Semantic
Web for Collaborative Knowledge Acquisition, pages
24–31.
Donalek, C., Djorgovski, S. G., Cioc, A., Wang, A., Zhang,
J., Lawler, E., Yeh, S., Mahabal, A., Graham, M.,
Drake, A., Davidoff, S., Norris, J. S., and Longo, G.
(2014). Immersive and collaborative data visualiza-
tion using virtual reality platforms. In Proceedings of
the 2014 IEEE International Conference on Big Data,
pages 609–614.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
The KDD process for extracting useful knowledge
from volumes of data. Communications of the ACM,
39(11):27–34.
Federal Big Data Commission (2012). Demystifying big
data: A practical guide to transforming the business
of government. Technical report, TechAmerica Foun-
dation.
Haffar, J. (2015). Have you seen ASUM-DM? Blog entry,
retrieved 16 Sep, 2016. https://developer.ibm.com/
predictiveanalytics/2015/10/16/have-you-seen-asum-
dm/.
Holzinger, A. (2013). Human-computer interaction and
knowledge discovery (HCI-KDD): What is the ben-
efit of bringing those two fields to work together? In
Availability, Reliability, and Security in Information
Systems and HCI: Proceedings of the International
Cross-Domain Conference and Workshop, pages 319–
328.
Horeis, T. and Sick, B. (2007). Collaborative knowledge
discovery & data mining: From knowledge to experi-
ence. In Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining, pages
421–428.
Klusch, M., Lodi, S., and Moro, G. (2003). Agent-
based distributed data mining: The KDEC scheme.
In Klusch, M., Bergamaschi, S., Edwards, P., and
Petta, P., editors, Intelligent Information Agents:
The AgentLink Perspective, pages 104–122. Springer
Berlin Heidelberg.
Korpela, E. J., Siemion, A. P. V., Werthimer, D., Lebofsky,
M., Cobb, J., Croft, S., and Anderson, D. (2015). The
next phases of SETI@home. In Proceedings of SPIE
9606, Instruments, Methods, and Missions for Astro-
biology XVII.
Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bam-
ford, S., Thomas, D., Raddick, M. J., Nichol, R. C.,
Szalay, A., Andreescu, D., Murray, P., and Vanden-
berg, J. (2008). Galaxy Zoo: Morphologies derived
from visual inspection of galaxies from the Sloan Dig-
ital Sky Survey. Monthly Notices of the Royal Astro-
nomical Society, 389(3):1179–1189.
Mariscal, G., Marb´an, O., and Fern´andez, C. (2010). A sur-
vey of data mining and knowledge discovery process
models and methodologies. The Knowledge Engineer-
ing Review, 25(2):137–166.
McCormick, K. (2007). CRISP-DM 2.0. Blog entry, re-
trieved 16 Sep, 2016. http://keithmccormick.com/
crisp-dm-20/.
Moyle, S. and Jorge, A. (2001). RAMSYS - a methodology
for supporting rapid remote collaborative data mining
projects. In ECML/PKKD01 Workshop on Integrating
Aspects of Data Mining, Decision Support and Meta-
Learning, pages 20–31.
Serban, F., Vanschoren, J., Kietz, J.-U., and Bernstein, A.
(2013). A survey of intelligent assistants for data anal-
ysis. ACM Computing Surveys, 45(3):article 31.
Shah, A. and Gulati, R. (2015). Contemporary trends in
privacy preserving collaborative data mining - a sur-
vey. In Proceedings of the 2015 International Confer-
ence on Electrical, Electronics, Signals, Communica-
tion and Optimization.
Sun, G.-D., Liang, R.-H., and Liu, S.-X. (2013). A survey
of visual analytics techniques and applications: State-
of-the-art research and future challenges. Journal of
Computer Science and Technology, 28(5):852–867.
Swan, M. (2013). The quantified self: Fundamental disrup-
tion in big data science and biological discovery. Big
Data, 1(2):85–99.
Terzi, D. S., Terzi, R., and Sagiroglu, S. (2015). A survey on
security and privacy issues in big data. In Proceedings
of the 10th International Conference for Internet Tech-
nology and Secured Transactions, pages 202–207.
Tuovinen, L. (2014). From machine learning to learning
with machines: Remodeling the knowledge discovery
process. PhD thesis. University of Oulu, Finland.
Tuovinen, L. and R¨oning, J. (2009). Everybody wins: Chal-
lenges and promises of knowledge discovery through
volunteer computing. In Proceedings of the 8th Inter-
national Conference on Computer Ethics: Philosoph-
ical Enquiry, pages 821–842.
Wirth, R. and Hipp, J. (2000). CRISP-DM: Towards a stan-
dard process model for data mining. In Proceedings of
the 4th International Conference on the Practical Ap-
plications of Knowledge Discovery and Data Mining,
pages 29–39.
Zhang, L., Stoffel, A., Behrisch, M., Mittelstadt, S.,
Schreck, T., Pompl, R., Weber, S., Last, H., and Keim,
D. (2012). Visual analytics for the big data era -
a comparative review of state-of-the-art commercial
systems. In Proceedings of the 2012 IEEE Conference
on Visual Analytics Science and Technology, pages
173–182.