DBPedia. Our experimental evaluation highlights the
importance of result diversity in the context of RDF
search and the flexibility of our approach and no-
tions of diversity in capturing different aspects of user
queries.
In future work, we plan to carry out more exper-
iments on other RDF datasets to further validate our
results. We also plan to explore other notions of diver-
sity such as an ontology-based diversity notion where
results can be diversified based on resource types for
instance. Finally, we plan to study other relevance
measures and to investigate other metrics for comput-
ing result diversity instead of the language modeling
approach we adopted in this paper.
ACKNOWLEDGEMENT
We would like to thank the American University of
Beirut’s research board (URB) for funding our re-
search.
REFERENCES
Agrawal, R., Gollapudi, S., Halverson, A., and Ieong, S.
(2009). Diversifying search results. In Proceedings
of the Second ACM International Conference on Web
Search and Data Mining, WSDM ’09, pages 5–14,
New York, NY, USA. ACM.
Allan, J., Wade, C., and Bolivar, A. (2003). Retrieval and
novelty detection at the sentence level. In SIGIR,
pages 314–321.
Auer, S., Bizer, C., Cyganiak, R., Kobilarov, G., Lehmann,
J., and Ives, Z. (2007). Dbpedia: A nucleus for a web
of open data. In ISWC/ASWC.
Carbonell, J. and Goldstein, J. (1998). The use of mmr,
diversity-based reranking for reordering documents
and producing summaries. In SIGIR.
Chaudhuri, S., Das, G., Hristidis, V., and Weikum, G.
(2006). Probabilistic information retrieval approach
for ranking of database query results. SIGMOD
Record, 35(4).
Chen, H. and Karger, D. R. (2006). Less is more: prob-
abilistic models for retrieving fewer relevant docu-
ments. In Proceedings of the 29th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, SIGIR ’06, pages
429–436, New York, NY, USA. ACM.
Chen, Z. and Li, T. (2007). Addressing diverse user prefer-
ences in SQL-query-result navigation. In Proceedings
of the 2007 ACM SIGMOD international conference
on Management of data, SIGMOD ’07, pages 641–
652, New York, NY, USA. ACM.
Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O.,
Ashkan, A., B¨uttcher, S., and MacKinnon, I. (2008).
Novelty and diversity in information retrieval evalua-
tion. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’08, pages 659–666,
New York, NY, USA. ACM.
Dali, L., Fortuna, B., Tran Duc, T., and Mladenic, D.
(2012). Query-independent learning to rank for rdf
entity search. In ESWC, pages 484–498.
Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M.,
and Weikum, G. (2009). Language-model-based rank-
ing for queries on RDF-graphs. In CIKM.
Fleiss, J. L. (1971). Measuring nominal scale agreement
among many raters. Psychological Bulletin, 76(5):378
– 382.
Gollapudi, S. and Sharma, A. (2009). An axiomatic ap-
proach for result diversification. In Proceedings of
the 18th international conference on World wide web,
WWW ’09, pages 381–390, New York, NY, USA.
ACM.
Jrvelin, K. and Keklinen, J. (2002). Cumulated gain-based
evaluation of ir techniques. ACM Transactions on In-
formation Systems (TOIS), pages 422–446.
Kasneci, G., Suchanek, F. M., Ifrim, G., Ramanath, M., and
Weikum, G. (2008). Naga: Searching and ranking
knowledge. In ICDE.
Lin., J. (1991). Divergence measures based on the shannon
entropy. IEEE Transactions on Information Theory,
pages 145–151.
RDF (2004). W3c: Resource description framework (rdf).
www.w3.org/RDF/.
SPARQL (2008). W3c: Sparql query language for rdf.
www.w3.org/TR/rdf-sparql-query/.
Suchanek, F. M., Kasneci, G., and Weikum, G. (2008).
Yago: A large ontology from wikipedia and wordnet.
J. Web Sem., 6(3).
Vee, E., Srivastava, U., Shanmugasundaram, J., Bhat, P.,
and Yahia, S. A. (2008). Efficient Computation of Di-
verse Query Results. In Proceedings of the 2008 IEEE
24th International Conference on Data Engineering,
pages 228–236, Washington, DC, USA. IEEE Com-
puter Society.
Zhai, C. X., Cohen, W. W., and Lafferty, J. (2003). Be-
yond independent relevance: methods and evaluation
metrics for subtopic retrieval. In Proceedings of the
26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, SI-
GIR ’03, pages 10–17, New York, NY, USA. ACM.