REFERENCES
American Cancer Society. (2015). Cancer facts and figures
2015. Atlanta: American Cancer Society.
ArcGIS. (2015). How optimized hot spot analysis works.
Environmental Systems Research Institute, Inc. URL
http://desktop.arcgis.com/en/desktop/latest/tools/spati
al-statistics-toolbox/how-optimized-hot-spot-analysis-
works.htm.
Austin L., Ahmad F., McNally M., Stewart D. (2002).
Breast and cervical cancer screening in Hispanic
women: a literature review using the health belief
model. Women's Health Issues, 12, 122-128.
Borugian M., Spinelli J., Abanto Z., Xu C., Wilkins R.
(2011). Breast cancer incidence and neighbourhood
income. Health Reports. Statistics Canada.
Brooks B. (2014). Using Twitter data to identify geographic
clustering of anti-vaccination sentiments. Master of
Public Health, University of Washington.
Bryson E., Schafer E., Salizzoni E., Cosgrove A., Favaro
D., Dawson R. (2016). Is perception reality? Identifying
community health needs when perceptions of health do
not align with public health and clinical data. SM
Journal of Community Medicine, 2, 1013.
Centers for Disease Control and Prevention. (2016a).
Behavioral risk factor surveillance system. Atlanta,
GA: CDC. URL http://www.cdc.gov/brfss/.
Centers for Disease Control and Prevention. (2016b).
Breast cancer screening guidelines for women. Atlanta,
GA: Centers for Disease Control and Prevention. URL
http://www.cdc.gov/cancer/breast/pdf/BreastCancerSc
reeningGuidelines.pdf.
Coppersmith G., Dredze M., Harman C., Hollingshead K.
(2015). From ADHD to SAD: analyzing the language
of mental health on Twitter through self-reported
diagnoses. NAACL Workshop on Computational
Linguistics and Clinical Psychology.
Cruz-Castillo A., Hernández-Valero M., Hovick S.,
Campuzano-González M., Karam-Calderón M.,
Bustamante-Montes L. (2014). A study on the
knowledge, perception, and use of breast cancer
screening methods and quality of care among women
from central Mexico. Journal of Cancer Education.
Dredze M. (2012). How social media will change public
health. IEEE Intelligent Systems, 27, 81-84.
Fulton J., Buechner J., Scott H., DeBuono B., Feldman J.,
Smith R., Kovenock D. (1991). A study guided by the
health belief model of the predictors of breast cancer
screening of women ages 40 and older. Public Health
Reports, 106, 410-420.
HealthTalkOnline. (2013). Reasons for not attending breast
screening. URL http://www.healthtalk.org/peoples-
experiences/cancer/breast-screening/reasons-not-
attending-breast-screening.
Hutto C., Gilbert E. (2014). VADER: a parsimonious rule-
based model for sentiment analysis of social media text.
Association for the Advancement of Artificial
Intelligence.
Janz N., Becker M. (1984). The health belief model: a
decade later. Health Education Quarterly, 11, 1-47.
Kumar S., Morstatter F., Liu H. (2013). Twitter data
analytics, Springer.
Lapointe L., Ramaprasad J., Vedel I. (2014). Creating
health awareness: a social media enabled collaboration.
Health and Technology.
Mahamoud A. (2014). Breast cancer screening in racialized
women: implications for health equity. Advancing
Urban Health. Wellesley Institute.
Mai V., Sullivan T., Chiarelli A. (2009). Breast cancer
screening program in Canada: successes and
challenges. Salud Publica Mex, 51, S228-S235.
MapOfUSA. (2007). US population density map. URL
http://www.mapofusa.net/us-population-density-
map.htm.
MapQuest. (2014). Geocoding API. URL
https://developer.mapquest.com/products/geocoding.
Mitra T., Counts S., Pennebaker J. (2016). Understanding
anti-vaccination attitudes in social media. Tenth
International AAAI Conference on Web and Social
Media. AAAI.
Myers E., Moorman P., Gierisch J., Havrilesky L., Grimm
L., Ghate S., Davidson B., Mongtomery R., Crowley
M., McCrory D., Kendrick A., Sanders G. (2015).
Benefits and harms of breast cancer screening: a
systematic review. JAMA, 314, 1615-1634.
Nakhasi A., Passarella R., Bell S., Paul M., Dredze M.,
Pronovost P. (2012). Malpractice and malcontent:
analyzing medical complaints in Twitter. AAAI Fall
Symposium on Information Retrieval and Knowledge
Discovery in Biomedical Text.
Pang B., Lee L. (2008). 4.1.2 Subjectivity detection and
opinion identification. Opinion mining and sentiment
analysis. Now Publishers Inc.
Passarella R., Nakhasi A., Bell S., Paul M., Pronovost P.,
Dredze M. (2012). Twitter as a source for learning
about patient safety events. Annual Symposium of the
American Medical Informatics Association (AMIA).
Paul M., Dredze M. (2011). You are what you tweet:
analyzing Twitter for public health. International
Conference on Weblogs and Social Media (ICWSM).
Paul M., Dredze M., Broniatowski D., Generous N. (2015).
Worldwide influenza surveillance through Twitter.
AAAI Workshop on the World Wide Web and Public
Health Intelligence.
PewResearchCenter. (2015). Social media update 2014.
Pew Research Center. URL http://
www.pewinternet.org/2015/01/09/social-media-
update-2014/.
Pulman S. (2014). Multi-dimensional sentiment analysis.
Oxford: Dept. of Computer Science, Oxford University.
URL http://www.lt-
innovate.org/sites/default/files/lt_accelerate_files/13.3
0%20Stephen_Pulman_UNIV_OXFORD.pdf.
Smith M., Broniatowski D., Paul M., Dredze M. (2015).
Tracking public awareness of influenza through
Twitter. 3rd International Conference on Digital
Disease Detection (DDD).
Sugawara Y., Narimatsu H., Hozawa A., Shao L., Otani K.,
Fukao A. (2012). Cancer patients on Twitter: a novel
Sentiment Analysis of Breast Cancer Screening in the United States using Twitter
273