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Abstract: Data streams, where an instance is only seen once and where a limited amount of data can be buffered for 

processing at a later time, are omnipresent in today’s real-world applications. In this context, adaptive 

online ensembles that are able to learn incrementally have been developed. However, the issue of handling 

data that arrives asynchronously has not received enough attention. Often, the true class label arrives after 

with a time-lag, which is problematic for existing adaptive learning techniques. It is not realistic to require 

that all class labels be made available at training time. This issue is further complicated by the presence of 

late-arriving, slowly changing dimensions (i.e., late-arriving descriptive attributes). The aim of active 

learning is to construct accurate models when few labels are available. Thus, active learning has been 

proposed as a way to obtain such missing labels in a data stream classification setting. To this end, this 

paper introduces an active online ensemble (AOE) algorithm that extends online ensembles with an active 

learning component. Our experimental results demonstrate that our AOE algorithm builds accurate models 

against much smaller ensemble sizes, when compared to traditional ensemble learning algorithms. Further, 

our models are constructed against small, incremental data sets, thus reducing the number of examples that 

are required to build accurate ensembles. 

1 INTRODUCTION 

Recently, there has been a surge of interest in the 

development of data stream algorithms that are not 

only accurate, but that are also fast and efficient in 

terms of resources allocation. This research has wide 

application in many areas. For instance, pocket (or 

mobile) data mining where the number of resources 

may be limited is relevant in scenarios such as 

emergency response, security and defense. In such a 

setting, the data are often incomplete and contains 

missing (or late arriving) labels. Further, green data 

mining, which aims to reduce the data mining 

processes’ carbon footprint, is an important growth 

area in this era of Big Data. In both these setting, 

labelling all the data is both expensive and 

impractical. 

Ensemble learning, where a number of so-called 

base classifiers are combined in order to build a 

model, has shown much promise when used in the 

online data stream classification setting. However, a 

number of challenges remain. It follows that the 

labelling process is costly and that missing (or 

incorrect) labels may hinder the model construction 

process. To this end, the use of active learning, 

where the user is in-the-loop, has been proposed as a 

way to extend ensemble learning (Sculley, 2007b, 

Sculley, 2007a, Chu et al., 2011). Here, the 

hypothesis is that active learning would increase the 

accuracy, while reducing the ensemble size and 

potentially decreasing the number of examples 

needed to build accurate model. That is, active 

ensembles potentially build accurate models against 

much smaller ensemble sizes, when compared to 

traditional ensemble learning approaches. Further, 

the models are constructed against smaller data sets, 

which imply that the wait time before a user is 

presented with a model is more likely to be reduced. 

This holds much benefit in scenarios such as 

emergency response and defense, where reducing 

decision makers’ wait times are of crucial 

importance. 

This paper introduces the active online ensemble 

(AOE) algorithm that extends online Bagging and 

online Boosting ensembles with an active learning 

component. In our approach, the human expert 
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(oracle) is presented with small sets of examples for 

labelling. The proposed algorithm is tested on 

streams of instances, which is suitable for scenarios 

where new instances need to be classified one at a 

time, i.e. an incremental and online learning setting. 

In this scenario, the goal is to achieve high 

performance (in terms of accuracy) while utilizing as 

few labelled examples as possible.  

This paper is organized as follows. The next 

section presents related works. We detail our active 

online ensemble method in Section 3. Section 4 

describes the experimental evaluation. Finally, 

Section 5 concludes the paper. 

2 RELATED WORK 

Classifiers construct models that describe the 

relationship between the observed variables of an 

instance and the target label. However, as stated 

above, in a data stream setting, the labels may often 

be missing, incorrect or late arriving. Further, 

labelling involves domain expertise and may be 

costly to obtain.  

Predictive models can be generated using 

classification methods. However, the produced 

model’s accuracy is highly related to the labelled 

instances in the training set. Incorrectly classified 

instances can result in inaccurate, or biased models. 

Further a data set may be imbalanced, where one 

class dominates another. One suggested solution is 

to use active learning to guide the learning process 

(Stefanowski and Pachocki, 2009, Muhivumundo 

and Viktor, 2011). This type of learning tends to use 

the most informative instances in the training set.  

Active learning studies how to select the most 

informative instances by using multiple classifiers. 

Generally, informative examples are identified as the 

ones that cause high disagreement among classifiers 

(Stefanowski and Pachocki, 2009). Thus, the main 

idea is using the diversity of ensemble learning to 

focus the labelling effort. This usually works by 

taking some information of the data from the users, 

also known as the oracles. In other words, the 

algorithm is initiated with a limited amount of 

labelled data. Subsequently, it passes them to the 

learning algorithm as a training set to produce the 

first classifier. In each of the following iterations, 

the algorithm analyses the remaining unlabelled 

instances and presents the prediction to the oracle 

(human expert) in order to label them. These 

labelled examples are added to the training set and 

used in the following iteration. This process is 

repeated until the user is satisfied or until a specific 

stopping criterion is achieved. 

Past research in active learning mainly focused 

on the pool-based scenario. In this scenario, a large 

number of unlabelled instances need to be labelled. 

The main objective is to identify the best subset to 

be labelled and used as a training set (Sculley, 

2007a, Chu et al., 2011). Hence, the basic idea 

behind active learning stems from the Query-by-

Committee method, which is a very effective active 

learning approach that has wide application for 

labelling instances. Initially, a pool of unlabelled 

data is presented to the oracle, which is then selected 

for labelling. A committee of classifiers is trained 

and models are generated based on the current 

training data. The samples used for labelling are 

based on the level of disagreement in between the 

individual classifiers. In pool-based scenarios, the 

unlabelled data are collected in the candidate pool. 

However, in a data stream setting, maintaining the 

candidate pool may prove itself to be challenging as 

a large amount of data may arrive at high speed.  

 One of the main challenges in data stream active 

learning is to reflect the underlying data distribution. 

Such a problem may be solved by using active 

learning to balance the distribution of the incoming 

data in order to increase the model accuracy 

(Zliobaite et al., 2014). The distribution is adapted 

over time by redistributing the labelling weight as 

opposed to actively labelling new instances. 

Learn++ is another algorithm proposed by (Polikar 

et al., 2001) that employ an incremental ensemble 

learning methods in order to learn from data streams.  

Also, traditional active learning methods require 

many passes over the unlabelled data, in order to 

select the informative one (Sculley, 2007a). This can 

create a storage and computational bottleneck in the 

data stream setting and big data. Thus, the active 

learning process needs to be modified for the online 

setting. 

Another scenario is proposed by (Zhu et al., 

2007) to address the data distribution associated with 

the data stream. Recall that in a data stream there is 

a dynamic data distribution because of the 

continuous arriving of data. In data stream mining, it 

is unrealistic to build a single model based on all 

examples. To address this problem, (Zhu et al., 

2007) proposed an ensemble active learning 

classifier with the goal of minimizing the ensemble 

variance in order to guide the labelling process. One 

of the main objectives of active learning is to decide 

the newly arrived instances labels. According to the 

proposed framework in (Zhu et al., 2007), the 
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correct labelling helps to reduce the overall classifier 

ensemble variance and error rate.  

It follows that having a user-in-the-loop to guide 

and to label new instances may be costly and time 

inefficient (Zliobaite et al., 2014). However, it is 

very beneficial in scenarios where the absence of 

labelled data has a high incidence over the accuracy. 

In such scenarios, the use of a labelled instances 

pool is proposed. Here, the algorithms query for 

information from the domain expert and the 

answered queries result in building trained models 

(Chu et al., 2011). By using these models, the 

algorithm is able to bootstrap, and thus to label new 

data.  

In our work, we extend this idea of maintaining 

an instance pool, where a small number of 

unlabelled instances are provided to the oracles. 

Additionally, we combine ensembles with online 

learning methods, as discussed in the following 

section. 

3 ACTIVE ONLINE ENSEMBLE 

(AOE) ALGORITHM 

In this research we developed two active online 

learning algorithms, namely active online Bagging 

(AOBagging) and active online Boosting 

(AOBoosting). Both of these approaches extend 

ensemble-based learning methods, namely Bagging 

and Boosting. 

3.1 Bagging and Boosting Ensembles 

Ensemble learning refers to the process of 

combining multiple models, such as classifiers or 

experts into a committee, in order to solve a 

computational problem. The main objective of using 

ensemble learning is to improve the model 

performance, such as classification and predictions 

accuracy (Read et al., 2012). This happens because 

if a single classifier predicts the wrong class value, 

the ensemble method takes into consideration the 

entire vote from all the trained classifiers. In this 

case, if one is incorrectly classified, the other 

correctly classified results will overcome it. In our 

framework, two active ensemble learning methods 

are used, namely Query-by-Bagging and Query-by-

Boosting. These two methods are based on the well-

known Bagging and Boosting ensemble methods, as 

summarized below. 

The Bagging algorithm (also known as bootstrap 

aggregating (Breiman, 1996)), trains each classifier 

on a random sampled subset that is uniformly 

generated from the original data set by random 

sampling with replacement. The final prediction is 

made based on the different hypotheses resulting 

from different learners. Finally, averaging the output 

of the resulting hypotheses provides the final 

prediction. The Boosting algorithm also resamples 

the data but with a uniform distribution. Rather, each 

hypothesis resulted from different learners is 

weighted. The final prediction is based on a 

majority-weighted decision (Mamitsuka and Abe, 

2007).   

In the active ensemble learning setting, the 

Query-by-Bagging and Query-by-Boosting methods 

extend the idea of Query-by-Committee, where 

instances are selected from a pool. That is, the oracle 

is responsible for choosing the selected data, rather 

than the ensemble learner. Hence, instead of the 

random sampling as used by traditional Bagging and 

Boosting, the oracle is responsible for choosing a 

small number of labelled examples to create the first 

predictive model. Incrementally, additional 

examples may be chosen by the oracle, to be 

labelled based on the knowledge gained from the 

previous model. The oracle’s involvement helps to 

improve the efficiency and reflect positively on the 

model accuracy.  

In this setting, the total number of example must 

be known beforehand (Bifet and Kirkby, 2009). The 

probability of choosing an example to be added to 

the bootstrap follows a Binomial distribution (Bifet 

and Kirkby, 2009) whereas in Boosting, the number 

of examples must be known in order to calculate the 

weights associated with the instances (De Souza and 

Matwin, 2013) It follows that Query-by-Bagging 

and Query-by-Boosting inherits these limitations 

since they originated from the original 

Bagging/Boosting ensemble methods. Therefore, it 

is not suitable to directly apply these two active 

learning methods in a stream setting.   

To address the previous mentioned limitation, we 

turn our attention to online, incremental stream 

learners. Specifically, Oza and Russell created 

incremental versions of the previously introduced 

Bagging and Boosting methods, namely OzaBag and 

OzaBoost (Oza, 2005). To handle data streams, Oza 

and Russell noted that the number 𝑁 of examples is 

infinite (𝑁 → ∞). In order to calculate the weight 

without the need of knowing the data set size, they 

updated the calculation by using a Poisson 

distribution (𝜆) which associate a probability to each 

example to be used in the training process (Bifet and 

Kirkby, 2009). In this method, the Poisson 

distribution (𝜆) parameter assigned to each example 
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is increased if the base model misclassifies the 

instances and decreased if it correctly classifies it.  

Then, the new value is presented to the next model 

(Oza, 2005). We adopt the OzaBag and OzaBoost 

methods during our active learning phase. 

The following subsections detail our active 

online ensemble (AOE) algorithm. As mentioned 

before, ensemble learning allows the algorithm to 

combine multiple classifiers in order to improve the 

classification or prediction accuracy. Further, online 

active learning uses a small number of labelled 

instances to guide the process of labelling the 

unlabelled ones. We present the most informative 

instances to the oracle (human expert) and then use 

the oracle’s feedback to simultaneously build the 

trained models. That is, our active online ensemble 

learning framework uses the diversity of ensemble 

learning to create a number of models. 

The overall workflow of our method is shown in 

Figure 1. The whole framework can be divided into 

two main stages. In the first stage, we utilize the 

previously introduced active learning methods, 

namely Query-by-Bagging and Query-by-Boosting. 

This is followed by online learning. 

3.2 Active Ensemble Learning  

Initially, we utilize ensemble learning methods to 

construct our initial classification model using the 

initial labelled training data. The class of the newly 

arrived unlabelled examples is predicted using the 

initial model. Next, the oracle evaluates the 

predicted values. Instances with high prediction 

probabilities are chosen and labelled by the oracle 

and then appended to the training set. Using the 

ensemble learning in this step guides the oracle 

toward the most informative labelled example by 

using multiple classifiers.  

As a first step, we proceed to train ensembles of 

classifiers against the current window of the data 

stream. A set of models is constructed for each 

window (or data set) from the initial (labelled) data.  

Using the resulting models, the test data 𝑇𝑖  is 

evaluated against the model. The outcome is a 

prediction value for each unlabelled example in the 

test set. These prediction values are subsequently 

presented to the oracle who chooses X examples 

from each class. Here, the oracle determines the 

numbers of examples that are chosen. Typically, the 

aim is to limit this number to range in between 10 

and 20. In the current implementation, the oracle 

chooses 10 instances from each class and appends 

them to the training data set. This number was set by 

inspection. That is, the oracle is presented with the 

predictive probability of an unlabelled instance 

belonging to a class. Subsequently, the oracle selects 

the examples with the highest prediction probability. 

He/she proceeds to label these examples and append 

them to the original training data. Adding these 

newly labelled examples results in the new 

accumulated data set 𝐹𝑖 that is tested repeatedly in 

the second stage and used to guide the learning 

process.  

 

Figure 1: Active Online Ensemble Process. 

3.3 Active Online Ensemble Learning  

The second part of the AOE method involves online 

learning. Here, the augmented training data, as 

obtained from active learning, is used to build 

incremental models. As mentioned earlier, the oracle 

actively selects the informative examples and adds 

them to the training data. This results in the 

predictive model, which is subsequently fed to the 

online methods, namely OzaBag and OzaBoost. The 

predicted models from the previous stage are used to 

guide the learning process. Any new instances 

coming in the stream are labelled using the online 
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ensemble methods resulting in improved 

classification accuracy. 

Algorithm 1: Active Online Ensemble Learning. 

Input:  

ℎ𝑖: Hypothesis obtained from the 

Ensemble Learning;  

𝐷𝑖: Training data resulted from the 

Ensemble Learning; 

𝐴: Active learning method (Online 
Boosting or Online Bagging); 

𝑇𝑖:  Test set;  

𝐶𝑖:  Base classifier; 

𝐹𝑖:  Labelled data;  

𝑁:  Ensemble size; 
𝑀:  Number of models in the 

ensemble; 

𝑋:  labelling set size (default 10) 
 

Initiate 𝐹𝑖 = 𝐷𝑖 

For all training examples in do 

1- Test 𝑇𝑖   according to 𝐴 on (ℎ𝑖 , 𝐶𝑖)  
2- Calculate probabilities and 

select 𝑃𝑖 

3- Present ranked 𝑃𝑖  to Oracle  
Oracle confirm label of X 

instance from each class (with 

highest  𝑃𝑖 value)  

4- Update 𝐹𝑖 with output from step 

2: 𝐹𝑖 = 𝐹𝑖 ∪ 𝑋 
5- Apply 𝐴 to (𝐹𝑖 , 𝐴)  

Output the final hypothesis according 

to 𝐴 

4 EXPERIMENTS 

We conducted our experiments on a desktop with an 

Intel®(R) Core™(TM) i5-2410M CPU @ 2.30 GHz 

processor and with 8.00 GB of RAM.  

We used four benchmarking data sets namely 

Waveform, Spambase, Chess and Australian, as 

summarized in Table 1. These data sets were 

obtained from the UCI Machine Learning repository 

(Lichman, 2013). The Spambase data set consists of 

emails, which were classified into Spam or Non-

spam. Specifically, this data set includes a collection 

of 4,601 e-mails from the postmaster and individuals 

who filed spam. Also, the collection of non-spam 

emails came from filed work as well as personal 

emails. The Chess data set represents a chess 

endgame, where a pawn on A7 is one square away 

from queening. The task is to determine whether the 

player who plays with the White Chess pieces is able 

to win (or not). The overall size of this data set is 

3196 with 36 attributes and it contains no missing 

values. The Waveform data set is formed from 5000 

records having a threefold classification, 

corresponding to three classes of waves. Finally, the 

Australian data set contains information about credit 

card applications. In this data set, all the attributes’ 

names and values have been altered in order to 

protect the confidentiality of the users. It consists of 

various data types.  
For the implementation of our algorithms, we 

used the Weka and MOA Data Mining environments 

(Witten and Frank, 2005). MOA was specifically 

designed for data streams mining (Bifet and Kirkby, 

2009). We evaluated the performances of our system 

against two based learners, namely the Hoeffding 

tree (HT) algorithm and the k-Nearest Neighbors 

(kNN) method. The model built with kNN is highly 

sensitive to the choice of k. For this reason, the 

values of k were determined by cross-validation, as 

suggested by Ghosh (Ghosh, 2006). Recall that we 

extended Oza’s online versions of Bagging and 

Boosting. We also use these two algorithms in our 

comparisons. 

Initially, each data set is normalized, a feature 

selection is performed and a reduced version is 

produced (Bryll et al., 2003). The attribute selection 

method was performed with Ranker with an 

Information Gain Attribute evaluator. This method 

process each attribute independently and is robust 

against missing values (Bryll et al., 2003). We 

utilized different ensemble sizes (10, 20, 25, 50, and 

100 respectively). In all cases, the data sets were 

partitioned into test sets (90% to 95% of the 

instances) and training sets (5% to 10% of the 

instances). The test set was divided into 16 subsets 

of equal size. The test sets were randomly selected 

from the original test set. In all cases, the number of 

unlabelled instances selected from the test set and 

presented to the oracle, at specific time, was set to 

10. These numbers were determined by inspection in 

order to avoid over-fitting. The MOA data stream 

generator was used in our work. 

4.1 Accuracy versus Ensemble Size 

Recall that one of the goals of this study is to 

determine the effect of ensemble sizes, when 

incorporating active learning into the ensemble 

learning process. For both AQBag and AQBoosting, 

the kNN classifier’s accuracy is generally the best, 

in terms of accuracy, except for three experiments 

against the SpamBase data set where the Hoeffding 

tree has the best performances. The origin of such 
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Table1: Data sets used in our experimentation. 

Data set Size #Attributes #Classes Data distribution 
Data 

characteristic 

Attribute 

characteristics 

Missing 

values 

Spambase 4601 57 2 
Class 0=39.4% 

Multivariate Integer, Real Yes 
Class 1= 60.5% 

Waveform 5000 40 3 

Class0 = 33.84% Multivariate, 

data 

generator 

Real No Class1 = 33.06% 

Class2 =33.1% 

Chess 3196 36 2 
Class0 = 52% 

Class1 = 48% 
Multivariate Categorical No 

Australian 690 14 2 
Class0 = 44.5% 

Multivariate 
Categorical, 

Integer, Real 
Yes 

Class1 = 55.5% 

 

behaviour is to be found in the very nature of kNN. 

Indeed, the classifier is a lazy learner that does not 

process the instances until the arrival of new 

unlabelled one. However, Observing new instance 

requires only updating the distance database. 

Therefore, the increase of the average classification 

time as the ensemble size increases is noticeable.  

In most cases the active learning algorithms are 

able to build an accurate model, using small training 

sets, as shown in Table 3. This table shows that, for 

the Spambase, Waveform and Chess data sets, that 

the percentages of instances used during active 

learning are less than 21%. In the case of the 

Australian data set, the active learning process was 

only able to construct accurate models after 56% of 

the instances were labelled. Also, larger ensembles 

were needed for this data set. In general, our further 

analysis shows that active online learning often leads 

to smaller, more compact ensemble sizes than 

traditional ensemble learning, as shown in Table 4.  

The only exception is in the case of the Bagging 

algorithm, when applied to the Australian data set. 

The results shown in Table 2 are the error rates for 

each data set for different ensemble sizes. As 

mentioned earlier, the test set is divided into 16 

subsets. Therefore, the resulting error rate is the 

average of the error rates over the 16 subsets.  

We further evaluated the results when using 

active learning (or not). The results indicate that, for 

our experiments, the active Bagging ensembles are 

generally smaller, than online Bagging ensembles.  

In summary, a benefit of our approach is that the 

training sizes are smaller than the ones used by 

counterpart online versions. That is, we are able to 

Table 2: Active Online Ensemble Learning - Summary of Results. 

Data sets Ensemble-size AOBagging (HT) AOBagging (kNN) AOBoosting (HT) AOBoosting (kNN) 

Spambase 10 3.8182% 6.0000% 5.8182% 3.2727% 

20 4.1818% 8.5455% 6.3636% 5.6364% 

25 4.3636% 6.1818% 4.9091% 8.5455% 

50 4.3636% 5.8182% 5.4545% 2.7273% 

100 4.1818% 7.4545% 5.6364% 8.0000% 

Waveform 10 16.2245% 11.2245% 16.6327% 12.3469% 

20 16.0204% 12.5510% 17.1429% 13.4694% 

25 16.3265% 16.0204% 15.9184% 11.7347% 

50 16.3265% 11.6327% 18.2653% 13.1633% 

100 16.0204% 11.6327% 16.7347% 15.1020% 

Chess 10 8.5938% 2.8125% 3.7500% 2.5000% 

20 7.1875% 3.2813% 5.3125% 3.7500% 

25 8.1250% 2.9688% 3.5938% 3.9063% 

50 9.3750% 5.3125% 4.6875% 3.7500% 

100 7.3438% 5.4688% 4.0625% 4.3750% 

Australian 10 5.9126% 3.3419% 7.1979% 4.6272% 

20 5.9126% 3.3419% 7.4550% 3.8560% 

25 5.9126% 3.8560% 8.4833% 5.6555% 

50 5.9126% 3.5990% 8.7404% 4.8843% 

100 5.9126% 3.0848% 7.7121% 4.1131% 
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Table 3: A summary of training subsets used. 

 Spam-

base 

Wave-

form 

Chess Australia 

Data set 

size 
4601 5000 3196 690 

Training set 

size: first 

iteration 

230 500 320 69 

Training set 

size: last 

iteration 

550 980 640 389 

% Instances 

used 
11.95 19.60 20.03 56.38 

Table 4: Best results based on ensemble sizes with and 

without active learning. 

Data set Bagging Boosting AO 

Bagging 

AO 

Boosting 

Spambase 50 100 10 50 

Wave form 25 25 10 25 

Chess 20 25 10 10 

Australian 50 25 100 20 

build accurate models against smaller, incrementally 

growing training seta. This holds and advantage, 

especially in a big data setting. 

4.2 Impact of Active Learning on 
Learning Time 

Intuitively, the incorporation of active learning into 

an ensemble learning environment (batch as well as 

online) implies an additional step, as it involves the 

user-in-the-loop. It follows that this may lead to 

overhead in terms of time. The results are shown in 

Tables 5 and 6. The time does not include the time 

involved in the manual labelling process` by the 

oracle  

The table shows that, in general, active learning 

does not significantly influence the model 

construction time. Rather, in many cases, the active 

learning process results in comparable and even 

faster times, as in the case of AOBagging using 

Hoeffding trees. An exception occurs when 

combining the kNN base learner with the Online 

Boosting approach. In this classifier, the distance 

between new instances to all the labelled sets is 

calculated and added to the distance matrix after 

each arrivals of a new instance. In addition, for each 

calculation, the algorithm needs to scan the entirety 

of the data which have been store so far in order to 

complete the calculation. Further, the fact that the 

Boosting algorithm demands the calculation of the 

instances weight after each new arrival has a 

negative impact on the classification of the new 

input neighbours (De Souza and Matwin, 2013). 

4.3 Discussion 

The presented framework provides valuable 

guidelines to data mining practitioners who aim to 

determine when to use the active learning process. It 

follows that active learning is essential in domains 

where very few labels exist. Considering the 

evaluated result and the data sets used in this work, 

we conclude that if the ensemble size is an important 

parameter, then online active learning may also be a 

good choice. That is, in a cost-sensitive learning 

setting where the size of the models is of 

importance, going toward the active ensemble route 

may be worthwhile. Overall, active online ensemble 

learning did not add a noticeable value to the 

model’s accuracy. In most cases, it resulted in the 

same accuracy as in the ensemble learning or even 

increased the error rate. However, active learning 

leads to smaller ensembles, which may again be 

beneficial in a cost-sensitive learning setting. 

Table 5: Average classification time for the ensemble 

methods measured in seconds. 

 Bagging Boosting 

Ensemble 

size 

HT kNN HT kNN 

10 0.043 0.009 0.048 0.269 

20 0.063 0.019 0.048 0.429 

25 0.067 0.016 0.054 0.580 

50 0.116 0.028 0.052 0.955 

100 0.228 0.033 0.070 2.302 

Table 6: Average classification time for the Active Online 

methods measured in seconds. 

 AOBagging AOBoosting 

Ensemble 

size 
HT kNN HT kNN 

10 0.029 0.017 0.041 84.605 

20 0.047 0.021 0.060 160.31 

25 0.053 0.021 0.071 177.30 

50 0.099 0.033 0.138 335.46 

100 0.193 0.066 0.281 588.10 

We further investigated the optimal size of the 

training sets. The result shows the classifiers’ ability 

to be trained with a smaller set of data. Also, we 

were able to increase the performances of the 

classifier by only adding ten new classified instances 

from each class to each new accumulated training 

set.  
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5 CONCLUSION AND FUTURE 

WORK 

This paper introduced an online active learning 

framework for data stream mining. In our work, we 

extended the online versions of Bagging and 

Boosting ensembles, in order to facilitate labeling of 

streaming data. Our results indicate that the active 

learning process requires smaller ensembles in order 

to obtain the same levels of accuracy than ensembles 

where the user in not in the loop. This is a promising 

result, especially from a cost-sensitive learning point 

of view. Our future research will involve additional 

experimental evaluation in order to investigate the 

decision points as to when to include active learning 

into a data stream. It follows that data streams are 

susceptible to concept drift. Our work did not 

explicitly address this issue and we plan to do so in 

the future.    
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